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In this paper, a new vibration signal processing technique is applied to a laboratory rotor
system for characterization of its misalignment. This technique utilizes the directional
spectra of the complex-valued vibration signals measured from two vibration transducers,
placed perpendicular to each other. The directional power spectrum preserves the important
directivity and shape information of whirling orbits, whereas the phase of the directional
cross-spectrum indicates its inclination angle. Experimental results support that the
directional power- and cross-spectra can be effectively used for diagnosis of the
misalignment in test rig.

INTRODUCTION

The operational vibration monitoring in rotating machinery gives usefhl information about
machinery malfunctions. Although the orbits taken from a rotor well represent the planar
motions, they are usually complicated in shape, containing many fi-equency components, so
that it is not straight forward to relate them with any potential malfi.mctions. Spectral
analysis is probably the most popular signal processing technique for diagnosing the rotor
systems because the frequency components and the corresponding amplitudes vary in
accordance with various fault mechanisms. Conventional spectral analysis techniques enable
the display of the corresponding frequency contents in a systematic way, but they treat the
rotor vibrations as real quantities so that their frequency spectra lose such an important
orbital information as directivity, i.e. forward (the same direction as the rotor rotation) or
backward (the direction opposite to the rotor rotation). On the other hand, the directional
power spectra (dPS) of complex-valued signals, which preserve the important directivity and



shape itiorrnation of planar motion, has proven to be a powerfhl diagnostic tool for rotating
and reciprocating machinery [1-8]. The key idea is that, in general, a planar whirling can be
decomposed into forward and backward harmonic components and that the harmonic
components, backward or forward, can be directly identified in the dPS which is acquired
from the Fourier transform of the complex-valued signal representing the planar motion of
the rotor. The complex-valued signal is usually made up with two real-valued signals
measured fiorn two vibration transducers, placed perpendicular to each other. The positive
(negative) frequency components appearing in dPS physically correspond to forward
(backward) whirling components. Thus the variations in forward and backward frequency
components of dPS can be effectively used for diagnosing any defects or faults in a rotating
machine, which cause the change in whirl orbits or Lissajous figures. In addition to the
directivity and shape information, it is necessary to determine the inclination angle of planar
motion. To this end, the directional cross-spectra (dCS) are proposed to give the inclination
angle of planar motion.

In this paper, in order to investigate the effectiveness of the proposed diagnostic method,
the directional spectral analysis technique is applied to a laboratory rotor system for
diagnosis of its misalignment. Misalignment , which is known to be the second most
common malfunction tier unbalance[9], is achieved by adjusting the bearing housing
supports using the two translation stages, resulting in additional preloads. Experimental
results support that the dPS and dCS can be effectively used for diagnosis of “
misalignment in test rig.

COMPLEX NOTATION

In this section, we will establish the convention for representing complex signals
consider the complex harmonic components as phasors rotating in a complex plane [1-14].
Let us first consider a pair of complex conjugate signals, p(t) and ~(l), of the form

me

and

p(t) = y(t)+ jz(t), ~(t) = y(t) – jz(t), (1)

where y(/) and z(t) are the real signals, j ( =&) means the imaginary number and the bar

denotes the complex conjugate. It is then natural to associate the complex signal p(t) with a

moving point, or a moving vector drawn from the origin, in the plane whose Cartesian
coordinates are y(t) and z(t). When we try to display the complex signal p(t) geometrically

in the complex plane, they-axis becomes the real axis, the z-axis being the imaginary axis, as
indicated in Figure 1. The complex harmonic signal p(t) of frequency co can be rewritten in

polar form, using Euler’s formula, as

p(t) = y(t)+ jz(l) = pf(t)+ pb(t) = ry eJ@r+ rb e-Ja~ (2)

{

.

1{
.=~(yc + Z,)++(2C - y,) eJot +

}
~(Yc -%)+ ~(zc+y,) e-Jo’,

where, py(t) = rye J@~,pb(~) = rbe ‘Jo’ , y(t)= y.costi + y.sinat, z(t)= zCcosf3kf+ z@nax,

b ‘4b Here the superscripts b and f denote the backward(clockwise)rf=rfej~, rb=re



and forward(counter-clockwise in Figure 1) components, and, yC and y. ( ZCand z,) are the

Fourier coefficients associated with y(t) (z(t) ). Note that the complex term e ‘al ( e ‘J@~) is

associated with the forward (backward) rotating unity vector at the circular rotating speed of

o and that the complex quantity # (/) is associated with the vector having the amplitude,

ry ( / ), and the initial phase, #(@b). It is well known that the complex harmonic signal,

which is the resultant of two contra-rotating vectors, each with different amplitudes and
initial phases, forms an ellipse in the complex plane [14]. The shape and directivity of the
elliptic planar motion are determined as follows :

rf(rb)=O : backward ( forward ) circular planar motion,

rb > rf : backward elliptic planar motion.

rb = rf . straight line motion, (3)

rb < ry : forward elliptic planar motion.

To quantify the above shape and directivity information, we may introduce the shape and
directivity index (SDI) defined as

rf – rb
–l<SDI=

rf + rb ‘1
(4)

where the inequality relations can be easily proven. Note that

SDI = -1 : backward circular planar motion,

–l<SDI<O : backward elliptic planar motion,

SDI=O : straight line motion,

O< SDI<l : forward elliptic planar motion,

SDI=l : forward circular planar motion.

In other words, the sign of SDI determines the directivity and the absolute value of SDI
indicates the correlation coefficient to a circle.

The inclination angle #j.. of the ellipse made by the major axis of the ellipse with respect
to they axis is obtained as

L=;(d+f+’).

[
= : Tan-l ‘c – ‘S

-1Zc+ Ys11 2(YC% + Y.’zs)
+ Tan ——Tin-l

Y.+ z. Y. – z. –2 YC2+ YS2– ZC2 – %2 “

The major and minor radii of the ellipse are

(5)

(6)



I ;J(ZS+YC)2+(ZC-Y$)2where, rf = — (y. +ZJ2 +(yc -z.)’ . Therefore, in

order to identify the parameters of the elliptic planar motion, we need to acquire the shape,
directivity and inclination angle associated with the planar motion.

DIRECTIONAL SPECTRA

The directional spectral density fimctions of a complex-valued signal p(t) are defined in

terms of the conventional spectral density functions [2], as

S,,(0) = SW(0) +S=(0) + j(SP(co) -SV(0)) (7)

= SV(0) +SZ(0) -2 .Im{SY(~)}

SF,(0) = SW(0) -SZZ(a) + j(SY(0) +S9(0))

= S~(0) -SZZ(0) + j.2 .Re{SP(@)}

Here, the quantity SPP(o) is called the directional power spectral density function (dPSD),

whereas SPP(o) is called the directional cross-spectral density fimction (dCSD). For the

real random signals, the spectral density fimctions satisfi such symmetric properties as

SW(-CD)= sv(to) = Su(a) , Sw(-@) = SW(CO)= Sv(@) (8)

which implies that the conventional PSD, Sv (u), is a real, even fhnction of O, whereas the

conventional CSD, 5P(~), is a complex-valued, conjugate even function of O. Thus, the

directional spectra satis~

Spp(-o) = Sm((v) , Spp(cv)= Spp(cu)= Spp(-o) (9)

which suggests that the dPSD, SPP(u), of a complex signal is a real, but not necessarily even

fimction of o and the dCSD, SPP(CO), is a conjugate even function of co. And, the dPSD has

the nonnegative property, that is,

SPp(/2) 2 0

Now let us consider a complex multiple-harmonic
motion given by,

(lo)

signal representing a periodic planar

p(?) = ${r~exp[j(-~kt)] +r[exp[j(~,t)]}
k=l

(11)

where m is the number of harmonic components of interest. Now let us consider only the k-
th harmonic component, as illustrated in Figure 1. From equation (7), we obtain the
corresponding dPSD and dCSD, respectively, as



which consists of two delta functions at o = ~ and o = -~. The dPSD, SPP(o), can give

not only the separation of forward and backward directional components but also the
directivity of each harmonic planar motion. On the other hand, The dCSD, SPP(co), leads to

give the inclination angle &through the argument of SPP(o), i.e.

[1Iln{s#)} 1 y
f&(d)) = +n-’

Re{SPP(co)}
=j(@ (~) +$b(o)) (13)

Figure 2 shows the laboratory test rotor system [10]. The shafl, which is 10 mm in
diameter and 500 mm in length, is supported by two identical deep groove ball bearings. And
a rigid disk is located at the mid span of the shaft. A 30 mm long axisymmetric rubber
coupling was used as the coupling element, which was found to be very flexible relative to
the shafl.

The test rig consisted of two translation stages with the movable range of 0.01 mm to 6.5
mm in the vertical and horizontal directions as shown in Figure 2. The initial shaft alignment
was carefi.dly achieved by adjusting the two translation stages so that the fundamental natural
frequencies of the rotor system in the y and z directions are equally minimized and the
circular whirling orbits are observed in the operating speed range. Using the carefhlly aligned
rotor system with the two translation stages, various angular misalignments with less than
0.02 mm positioning error were imposed at the two ball bearing locations.

RESULTS AND DISCUSSION

Figure 3 shows the whirling orbit measured at the mid-span, along with the
lX(synchronous to the machine running speed) and 2X filtered orbits, as the angular

misalignment of Az~= 2.0 mm is applied. The 1X (2X) orbit shows a nearly forward circular
(a forward elliptic) whirling motion. Note that the whirling orbit of the test rig with the
angular misaligmnent contains the high level of 2X vibration component, which is known to
be a typical characteristics due to misalignment [9]. In particular, the inclination angle made
by the major axis of the 2X orbit well coincides with the misalignment direction along the
horizontal direction. Figure 4 shows the directional power- and cross-spectra, from which
we can easily identi~ the well-separated backward and forward harmonic components, and
the directivity. The magnitudes of directional harmonic components of interest were
obtained by calculating the area under the corresponding spectral peak. The SDI indices for
the 1X and 2X components were found to be 0.94 and 0.18, respectively. Note that the
directional cross spectrum well represents the inclination angle of the 2X harmonic



component. Note that the inclination angle of a nearly circular planar motion is very
susceptible to the quality of data.

CONCLUSIONS

A vibration signal processing technique is applied to diagnosis of misalignment utilizing
the directional spectra of complex-valued signals representing the planar motion. The
experimental results confirm that the angular misalignment in a test rig can be effectively
identified by using the directional spectra.

REFERENCES

1

2

3

4

5

6

7

8

9

Lee, C. W., Vibration Analysis of Rotors, Kluwer Academic Publishers, 1993.

Lee, C. W., Job, Y. D., “A New Horizon in Modal Testing of Rotating Machinery,”
Keynote Paper, The Fourth Asia-Pacific Vibration Conference, Melbourne, Nov., 1991

Lee, C.W., Job, C. Y., “Use of Directional Spectra for Diagnosis of Asymmetry/
Anisotropy in Rotor Systems,” Fourth International Conference on Rotor Dynamics,
Chicago, Sep., 1994, pp.97-101.

Lee, C.W., Park, J. P., and Han, Y. S., “Use of Directional AR and ML Spectra for
Detection of Misfired Engine Cylinder,” Fifteenth Biennial ASME Conference on
Vibration and Noise, Vol. 3, Part A, DE-VO1. 84-1,1995, pp. 1397-1403.

Job, C.Y., and Lee, C. W., “Use of dFRFs for Diagnosis of Asymmetry/Anisotropy
Properties in Rotor-Bearing System,” ASME J. of Vibration and Acoustics,, Vol.118,
No.1, 1996, pp.64-69.

Lee, C.W., Park, J.P., “Inner Race Fault Detection in Rolling Element Bearings by Using
Directional Spectra of Vibration Signals, “ Sixth International Conference on Vibrations
in Rotating Machinery, Oxford, U.K., Sep., 1996, pp.361 -370.

Lee, C. W., Han, Y. S., “ Transient Engine Vibration Analysis by using Directional Wigner
Distribution, “ SAE Noise and Vibration Conference, Traverse City, May, 1997.

SouthWick, D.,” Using Full Spectrum Plots,” Orbit, Vol. 14, No.4, Dec., 1993, pp19-21.

Goodwin, M. J., Dynamics of Rotor-Bearing Systems, London: Unwin Hyman Ltd.,1 989.

10 Lee, Y. S., Lee, C. W., “ Effect of Misalignment on Vibration Characteristics of Misaligned
Rotor-Ball bearing Systems,” Submitted to Journal of Sound and Vibration.



Complex plane @i Real,y(t)

a~+m

‘SilxI!Y
- I

r

y(t)

Real plane

z(t)

Figure 1

zImaginary plane

xTime

Representation of a complex-valued signal as the sum of
two contra-rotating vectors

‘b’--F‘d+ ‘2-F
Motor

Rubber Coupling

r

250 250

c
*

1
Translation stage Translation stage

Yj
Brg#2

Brg# 1 ❑

El •J
1

E El—

~ El Eo– T
Ybl = O, Zbl = O yb2=o, zl)2=2mm

Figure 2 Experimental setup and type of angular misalignment

(AZ. = z~z- z~~=2.0mm)



0,20 ,,, ,,, ,,!, $!! !,,, ,!! !

t-
0.15 --;---;---;---;---;---;- --;----

,,, ,,, ,

1!
,,,,,,!

010 --;- . . . .

~

lx
005 --;-

.;000 --:- . . . .
6
‘-0.05 --:-

-010 --:- . . . .

t
-0.15 --:---:---:---:---:---:- --:----,,, ,,, !,,, !0, !
.02(3 ~

0.2

0.1

0.0

-0.1

3* ~

Oooa 0.035 0.070 0105 0.140’

02 -
Verticaldirection@axis)

0.1

0.0

-0.1

-020 -0.15-0.10-005 0.00 0,05 0.10 0.15 0.20-O”:m
I I I

0.035 0.070 0.105 0.140
zaxis(mm) ccwrotation

Whirling orbit
time(sec.)

Horizontaldirection(zaxis)

Figure 3 Whirling orbits and time histories at 1700 rpm:

angular misalignment Az~= 2.0 mm
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Figure 4 Directional power and cross spectra of complex-valued signal
for angular misalignment.


