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The aim of this paper is to present a study of the evolution of partials in polyphonic
piano sounds. The identification of polyphonic sounds usually takes place in the frequency
domain and works on a small number of partials, but a common problem in most of the
identification methods is octave errors. In this paper, the authors consider the identification
of polyphonic piano sound signals, that is, several notes played simultaneously on the same
keyboard instrument. The evolution in time and frequency of the partials and the distribution
of their energy are interesting to investigate in order to use them to identifj the notes. For
example, the amplitude of the partials could be used to dktinguish the case of overlapping
repeated notes. Thus the case of a note (N1) played two times with a short delay between
the notes ~l+short delay+Nl] is difficult to separate from the case ml long+short
de1ay+N2], when note N2 is played during N1’s decay.

In order to treat these and similar diflicult situations, this paper presents a study of
the evolution of the partials of different piano notes, which can be used when deriving
general identification methods for polyphonic piano signals.



INTRODUCTION

The identification of polyphonic piano sounds is a problem recognized

as being very difficult to solve especially owing to the fact that the signals

studied are non-stationary and that possible interactions between partials

belonging to different notes can occur. No ideal time-frequency transform for

this kind of problem has been discovered and the Short Time Fourier

Transform continues to be used frequently.

The identification method for polyphonic piano sounds (several notes

played simultaneously on the same piano) that we have developed ~ossi and

Girolarni, 1996] uses spectral information but this information does not help

distinguish easily, for example, long notes from the same note played several

times successively. In order to detect the notes’ onsets, a study of the evolution

of the notes’ partials’ in monophonic and polyphonic piano sounds was thus

carried out.

1- MONOPHONIC SOUNDS

Monophonic sounds present, a priori, fewer difficulties of identification

than polyphonic sounds. Nevertheless, the multiplicity of ways of playing, even

in the case of a single note played once, makes it difficult to distinguish some

ambiguous cases.

1.1- SIGNAL AMPLITUDE

A first possible use of the information from the temporal domain

is the detection of notes’ onsets from the evolution of the signal amplitude.

Figure 1 presents the evolution of the signal amplitude in the case of a long

note Cl and also in the case of this note played twice successively with

variable delays between the onsets. The hammer velocity is 72 (MIDI notation)

for repeated notes and 68 for the isolated note.
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Figure 1: Temporal signal of note Cl played twice successively with
various delays. The second onset is not clearly visible in the different
figures.

In this figure, we can see that the second onset is not easily visible in

every case, for example when the delay is 200 ms and 250 ms. The smooth

onset of note Cl, which is a characteristic of lower notes ~lackham, 1965]

makes the detection of notes’ onsets from the evolution of the signal amplitude

difficult.

1.2- SIGNAL ENERGY

Logically, it could be expected that, if a note is played twice

successively, there would be two increases in the energy in the signal, so, we

studied the temporal evolution of the signal energy for various notes: isolated

notes, repeated notes, long notes. To determine the temporal evolution of the

notes’ energy, separated frames 20 ms long were used. Then, the energy

contained in each frame was computed using the formula:

& = ~(x(?z). h(?n - n))z
m n

where:
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Figure 2: Temporal evolution of the ene~ of note CI played twice
various delays.

successively with

The temporal evolution of the energy of note Cl is shown in figure 2 for

the same cases as those presented previously in figure 1. Note onsets are easily

visible in this figure, but three points must be observed: first, the energy of the

second onset is not systematically of the same amplitude as the first one,

although the hammer velocity is the same for the two onsets. There is an

increase in energy but its level depends on the delay between the two onsets.

Secondly, after the second onset, the shape of the energy curve is not always

the same as in the case of the isolated note. Because the energy distribution of

a note is linked to the energy of its partials, these observations show it is

necessary to study the temporal evolution of the amplitude of note’s partials

even in the simple case of repeated notes. This study will be presented in the



following subsection (1.3). The third point is a question. Each new onset is

associated with a more or less significant increase in energy, but is it the only

situation where an increase in energy can be found? No, as we shall now see.

The first part of figure 3 presents the evolution of several long notes from

octave five.
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Figure 3: Temporal evolution of the energy of long notes with beats.

The notes shown in this figure are C5, C#5, D5, D#5, E5 and F5 all

played with the same velocity, 104. In these long notes, beats (due mainly to

the contributions of the three strings) are present and produce very significant

variations in the notes’ amplitude. The evolution of the energy presented in the

lower part of this figure shows that the level of the energy of some notes’

onsets is lower than that of the beats of some other notes. Consider, for

example, Ds and D#5. The energy associated with the beats of D#5 is higher

than the energy of the onset of note D5. If one doesn’t know the fact that, for a

given note, beats occur, it will thus be diflicuk to distinguish the case of a long

note with beats from the case of repeated note.

1.3 - THE EVOLUTION OF THE AMPLITUDE OF NOTES’

PARTIALS



The evolution of the partials’ amplitudes is obtained in the

following way: the spectrum of the sampled signal (with a sampling rate equal

to 22050 Hz) is computed by using an FFT on 32768 points. The partial to

study is isolated by weighing the spectrum with a gaussian band-pass filter and

an inverse FFT is carried out to obtain its temporal evolution. Figure 4

presents, for note Cq, the evolution of the amplitude of partial #8, and the

energy associated with this note.
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Figure 4: Temporal evolution of partial Ml of note C3 and the energy associated with
this note in the case of repetition of the note.

This figure shows that the global energy increases for each new onset,

but also shows that for a given partial, the evolution of the amplitude can be

very different, and depends on the delay between the first and the second

onset. This fact is due to the difference of phases between the already existing

partial, and the new excitation; for a partial with a frequency of 1000 Hz, a

difference of 0.5 ms in the delay will give a phase opposition instead of the



same phase. In other words, the presence of a second onset of the same note

does not systematically mean that the amplitude of a given partial will increase

(at least at the time of the onset).

The computation of a signal’s energy when a note is played can be

carried out by adding the square moduli of the signal’s components. If, for two

successive onsets, the amplitude of note partials are different, then the level of

the global ener~ of the signal will be different for the two onsets. Moreover,

the evolution of the partials’ amplitude depends on the delay between the first

and the second onset and produces a different shape of the energy evolution in

each new onset, which was observed in figure 2.

2- POLYPHONIC SOUNDS

The study of the temporal evolution of the amplitude of notes’

partials in a polyphonic context is interesting to investigate in order to estimate

the results of interactions between partials pertaining to different notes. A

simple case of partial interaction occurs when two notes sharing the same

partials are played one after the other with the two notes simultaneously

present for a certain length of time. To illustrate this case, an example with

notes Cl and A 1 played with a delay of 125 ms and 300 ms is considered in

figure 5, which shows the temporal evolution of partials #9 and #10 of note Cl.

These partials have FFT bin numbers 437 and 486 (32768 points FFT, a

sampling frequency of 22050 Hz) while the closest partials of note Al have bin

number 407 (partial #5) and bin number 489 (partial #6). The fi-equency

difference between bin numbers 407 and 437 is about 20 Hz while the

difference between bin numbers 486 and 489 is about 2 Hz. From figure 5 we

can see that when the partials of the two notes have close bin numbers the

perturbations on the amplitude can be very important.



delay = 125 ms
1*

0.5 \

“- ‘:m
00 0.5 1 0 0.5 1

delay = 300 ms
1

E!El

1

0.5 0.5

0 0
0 0.5 1 0 0.5 1

Psrtial 9of noteCl Partii 10 of noteCl

--:nota Cl only
—: nctaCIMthnote Aldeleyed

polyphonic sound CIAI

-*
X-axi& time in seconds

Y-axis normatizad amplitude

Figure 5: Temporal evolution of partial ## and HO of note Cl when notes CI and AI
are played with a delay of 125 and 300 ms.

The figure also shows that even a remote partial can consequently

modi~ the evolution of the amplitude of another one.

CONCLUSION

This study

piano sounds has

of the evolution of partials in monophonic and polyphonic

shown that the perturbations in the temporal evolution of the

amplitude of partials, due to interactions of different note partials, can be

significant. The differences in phase at the time of a second onset determine if

the interaction is constructive (with an increase of amplitude) or destructive

(with a diminution of amplitude) and in a general way, the evolution of the

amplitude of the partials

sounds. This shows that

detecting notes’ onsets.
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