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Abstract Based on the Biot’stheory, the propagation of elastic waves through trans-
versely isotropic fluid-saturated porous media is examined. The dissipation due to fluid
viscosity is considered. We first derived the characteristic equation of plane waves in an

arbitrary layer, of which the closed-form solution is presented. This enable us to write
the general form of waves in a layer. The results show that there are three kinds of waves

propagating in a layer: the fast and slow quasi-longitudinal waves (QP1 and QP2) and
the quasi-transverse wave (QSV). Then, by consideration of the continuity conditions
at the interface, the transfer matrices between layers are derived. The expressions of

amplitudes, phase velocities, attenuation coefficients and directions of the reflected and

transmitted waves are presented.

1. INTRODUCTION

The propagation of elastic waves in layered media is of fundamental interest in many

fields such as earthquake engineering, geophysics, civil engineering, etc. It is known
that the geologic materials generally contains pores saturated with fluid. Biot[l,2]

developed a wave theory on isotropic fluid-saturated porous media. Based on this

theory, many researchers have studied the wave propagation through layered isotropic
porous media[3–5]. In this paper, we consider the transversely isotropic case.

The basic equations for a general anisotropic porous medium were presented by

Biot in 1962[6]. But the associated wave problems were not considered unitl late 1980’s.
See, for instance, Refs.[7–9] which discussed the waves in a transversely isotropic porous

medium. The results show that four kinds of waves propagate in such a medium: the fast
and slow quasi-longitudinal waves ‘(QP1 and QP2); the quasi-transverse waves (QSV)



and the anti-plane transverse wave (SH).

2. BASIC EQUATIONS

For a transversely isotropic medium with the principal axis as z-axis, the constitutive

relation follows from Ref. [6] as

I
7== = (z~l + ~2)f?zz + B2evu + B3%z + ~6f

~v = B2e.. + (ZB1 + ~2)evv + B3e.. + B6cT

..= Bge.. + B3evv + l%e.. + 137$T

u. = zB5ev., TZZ =T 2B5 ezz, T.V = 2Ble.U

p = B6ezz + B6evV + Bye.. + Bd

(1)

where p is the pore fluid pressure and c is the increment of fluid content per unit volume.
The eight material coefficients B1 - B8 can be calculated from the elastic coefficients

of skeleton, cij, and the bulk moduli of constitutive grains and saturant fluid, K, and
K, [10]. In terms of the displacement components of bulk material and saturant fluid,

ui and Ui (with i = 1,2,3 corresponding to z, y, z), e~j and c may be expressed as

)/2, ( = -w~,~e~j = (U~,j+ Uj,% (2)

where Wi = @(Ui – Ui) and + is the porosity of the medium. For the motion in m plane,
the governing equations may be written as

t a%= (%&z ALz (YWZ azw=
(ZB1 +B2)W + B5W + (B3 + B5)m - B6W - B6m = PUZ + pjw.

a%. t%z t%z azwz a2 w.
(B3+B5)- + B5~ + B4~ - B7= - B7 ~z2 = Puz + pf~z

{
a%z a%. azwz a2wz

B6 — + B7— – B8— – B8—
axz axaz axz axaz

= –pfii= – rnlti)z – r~wz

B6 —~>z + B7$ - B8~ - B8~ = -pfiiz - rn3Gz - r3wz
\

(3)

where p = (1 – @)p. + dp f with p. and pf being, respectively, the mass densities of
skeleton and fluid. mj and rj (j = 1,3) are the coefficients introduced by Biot and can

be written as

mj = Re[~j(u)]pf/#, rj = q/R.e[~j(w)], j=l,3 (4)

where w is the angular frequency; q is the viscosity of the fluid; and ~j (w) and Kj (w)
are, respectively, the dynamic tortuosity and permeability with relation: Olj(W) =

i7@/ [~j (w) wpf ]. Johnson et al.[11] presented an asymptotic expression for dynamic
permeability in the isotropic case. Here we extend their results to the transversely

isotropic case

{[ 1
1/2 –1

4ic$(co)K~(C))wPf _
Kj(W) = Kj(0) 1 –

iOlj(OO)Kj(0)Wpf

}
(5)
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where aj is the characteristic length of the pores.

3. WAVE FIELDS IN A SINGLE LAYER

The problem considered in this paper is sketched in Fig.1. Two half-space are bonded

through N layers. The materials are transversely isotropic fluid-saturated porous media
with principal axes perpendicular to the interfaces. An elastic wave (QP 1, QP2 or
QSV) propagates from the lower half-space to the upper one through N layers. We first

examine the wave fields in an arbitrary layer. Suppose that the waves in the nth layer
are of the form

{Uz,uz, wz,wz ~} = {al,a2,a3,a4}(~)exp[i(k(~)+ l(tt)Z)], n = O w N + 1 (6)
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Figure 1: Wave propagation in layered porous media

where the subscript (n) will be suppressed in case of no confusion in the following
analysis. it follows from the Snell’s law that the complex apparent wavenumbers k(.) (n =

O = N + 1) are equal to that of the incident wave, denoted by k. Substituting (6) into
(3), one may have

[dij]{a19a29a37 a4}T = O (7)

where [dij] is a 4 x 4 square matrix with elements given by

I

dll =w2p – [(2B1 + B2)k2 + B5Z2], dlz = d21 = –(133 + B5)H

d13 = d31 = W2/1, + B6k2, d14 = d41 = B6ki

d22 = W2P – (B5k2 + 13412), d23 = d32 = B7kl

d24 = d42 = w2pf + B712, dss = w2(ml + irl/w) – B8k2

d34 = d43 = –B8kl, d44 = w2(m3 + ir3/w) – B812

(8)



The condition that (7) has non-trivial solution is

Idijl = O

from which we get an equation of 6th-order as follows

a16 + bw214+ cw412 + dw6 = O

where a, 1+c and d are listed in Appendix. Set

12 bz 2b3 cb
t=~+&, P=:– G,9=:+5– —3a2

Equation (10) then reduces to
(2+pf+q=o

of which the solution may be obtained by Cardon method[12] as

(9)

(lo)

(11)

(12)

(13)

with

[ 1Rj = –~ + (–l)jti
“3 ‘=(92+(:)’ ‘= ‘l:ifi

It follows from (11)
Zj = ~[~j – b/(3a)]1j2, j = 1,2,3 (14)

which is generally complex. It is noted that Relj <0 for the reflected waves and Relj ~ O
for the refracted ones. The three roots of the equation correspond, respectively, to the
three types of waves: QP 1, QP2 and QSV. From (7) we arrive at

ai~) = A~)Xj, j = 1,2,3; i = 1,2,3,4i (15)

‘herexj= [&(Afj))2]”2“with A!) given in Appendix. With the superscript r refer-

ring to the reflected waves and t to the refracted ones, the wave fields in the nth layer
may be written as

(16)

The associated stress components of the skeleton and pore fluid pressure are given by

where



b!), b~) and b~) are of the similar forms. It is noted that no reflected waves exit in the
upper half-space and no refracted waves in the lower one.

4. TRANSFER MATRIX BETWEEN LAYERS

Deresiewicz et al. [13] discussed the boundary conditions on the interface between two
fluid-saturated porous media. These conditions include the continuity of the following
components: (i) the tangent ial displacement u= of the skeleton; (it] the normal displace-
ment u= of the skeleton; (iii) the average normal displacement (uz + w=), or equivalently
w=; (iv) the tangential traction r==; (u) the average normal traction (rZZ- #pj); and
(vi)pore fluid pressure pf (for the case of no resistance to interstitial flow across the
interface).

Introduce a column matrix

{S.(z)} = {UZ,UZ,WZ,TZZ,TZZ- ~pj,pj}:, n = 0- N + 1 (19)

The boundary conditions then lead to

{Sn(hn)} = {Sn+,(hn)} (20)

Set

{C.} = {Ai, AL, A;, A:, A:, A;}: (21)

where A; = O for n = O and A; = O for n = N + 1. Equations (16) and (17) may be
written as

{S~(z)} = [ll~(z)]{C~}ei’Z (22)

which when substituted into (20) yields

[Dn(hn)]{cn}= [Dn+,(hn)]{cn+,} (23)

where the 6 x 6 square matrix [D.(z)] is given in Appendix. Rewrite (23) as

{Cn+,} = [Tn]{cn} (24)

where [T~] = [Dn+l (h~) ]‘1 [11~(h~)] is the transfer matrix between layers. Using the
boundary conditions of the interface z = hl, h2,.. . h~-l successively, we get the follow-
ing relation between unknown coefficients of the lth layer and the nth layer:

{c~} = [T~_,][T~_2]..0 [T,]{c,} = [E~]{c,} (25)

Furthermore we have

{S~(h~)} = [D~(h~)][E~][D1 (0)] -’{S1(O)} = [R~]{S1(0)} (26)

Now let us consider an incident wave in the lower half-space with the form

{uy,uz ,W= ,(i) (i) w:)} = {aZo, azo, bZo,b@}Ao exp[iko(zsin 60+ z cos O.)] (27)

.
where k. is a complex wavenumber which, together wlth azo, a=o,

.
bzo and ba, can be

obtained as follows: Insert k = k. sin 00 and J = k. cos do into (10). We then have a cubic



equation for kg, of which the three roots can be derived as before. With k. in hand, we
can compute azo, a=o, bzo and b~ with equation (15). The phase velocity of the incident
wave is given by co = u/Re(ko), and the attenuation coefficients by a. = Im(ko). For
three different values of ko, we have three types of waves: QP1, QP2 and QSV. The
needed stress components associated with the incident wave are

{TS), T$), p~)} = {ho, t.0, so}iAo exp[iko(z sin 60 + z cos 80)] (28)

where

{

tzo = koll~ (a=ocos do + azOsin O.)

t.o = ko(llsa.o sin 00 + B4a.o cos 60) – k@T(b.O sin 00+ bzocos O.) (29)

so= kO(BGazOsin 6$+ &a,O cos 60) – k@a(bzO sin 60+ bzocos 6.)

Introduce a column matrix

{D(’)(0)} = {a.o,a.o,b.o,it.o, i(t.o - @o),&)}T (30)

The boundary conditions on the interfaces: z = O and z = hN can be written as

/io{di)(o)} + {so(())}= {S,(0)}, {SN+,(hN)} = {SN(hN)} (31)

Substitution of (22) and (26) into (31) yields a linear equation group

([RN][DO(0)] - [DN+l(hN)])({CO} + {CN+I}) = -[RN] {D(’) (0)}AO (32)

from which we can obtain the coefficients {C’o} and {CN+~}. The angle and phase
velocity for the reflected waves in the lower half-space are given by

(?; = tan-l[Re(k)/Re(l~ )o], c; = w/ [Re(k)]z + [Re(l~)o]2 (33)

and those for the transmitted waves in the upper half-space are

$ = tan-l[Re(k)/Re(l~ )N+l], c; = u/~[Re(k)]2 + [Re($)N+~]2 (34)

The attenuation coefficients in z–direction associated with the reflected and transmitted
waves are

a$ = –Irn($)o, aj = Im(Zj)N+l (35)

The results in other layers can be obtained analogously.
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Appendix

The coefficients of equation (10) are as follows

C = – (fi1B5D1 + ti3E)k4 + {–2~; [(B3 + 2&)B8 – &B7]

+ 2pffiI[(2BI + Bz)B7 – (B3 + B5)B6] + 2~ffi3[B4B6 – (B3 + B5)B7]

+ p9%I(DI + B5B8) + /Yiii3(D2 + B5B8) + iit1fi3[(2BI + B2)B4

- (B3 + 2B5)B3]}~2 + [21$B7 + PP~B8 + P;W35 + P;fi3B4

– p2ih1B8 – 2pp@1B7 – pfh1fi3(B4 + Bb)]

d = (pfiI – p~)(p??z3 – p;) + [2p~B6 + PP~B8 + P@I(2B1 + Bz)

+P;fi3B5 – p2~3B8 – 2PPjti3BG – pfiIfis(2Bl + B2 + B5)]k2

+[–/@l + @f fi3B5& + pfi3(D1 + B5B8) + filfi3(2& + B2)B5]k4

–fi3D1B5kG

(A3)

(A4)



(A6)

(A7)

(A8)

(A9)

(A1O)

1:(D~)s j = i(b~) - @&) exp(il~z), (D~)S,j+3 = i(b~) - #b&) exp(il~z)

(D~)Gj = i& exP(iZ~z), (D~)G,j+s = i&) exP(i~~z)

For n = O the last three columns are zero, while for n = N + 1 the first three ones are

zero.


