
FIFTH INTERNATIONAL CONGRESS ON SOUND

DECEMBER 15-18, 1997
ADELAIDE, SOUTH AUSTRALIA

AND VIBRATION

ENERGY FLOW MODELS FROM FINITE ELEMENTS: AN
APPLICATION TO THREE COUPLED PLATES

P.J. Shorter and B.R. Mace

Department of Mechanical Engineering
The University of Auckland, New Zealand.

pj.shorter@auckland. ac.nz ; b.mace@auckkmd.ac.nz

This paper is concerned with the prediction of the distribution of vibrational energy
throughout a structure. The paper illustrates how the results from a finite element model can
be rephrased in terms of subsystem powers and energies using component mode synthesis.
Equations are derived for the response, and frequency averages are obtained from them
analytically. The technique is then illustrated by considering a system comprising three
coupled plates, each plate being coupled along two of its edges. Ensemble and frequency
averaged numerical results are compared with SEA predictions. It is seen that SEA
predictions can be in error, this being attributable to coherence effects which arise because the
system is strongly coupled, and the effects of averaging over narrow frequency bands.

1. INTRODUCTION
The prediction of the vibrational response of a structure at higher frequencies presents
particular challenges to the analyst. The effects of structural uncertainties, and the large
number of modes contributing to the response at high frequencies, have led to the adoption of
structural acoustic techniques such as statistical energy analysis (SEA). In SEA, a system is
described in terms of the dynamic behaviour of a set of subsystems. The response of the
system is determined by considering the interactions between these subsystems, averaged over
an ensemble. SEA predictions (and consequently the assumption of coupling power
proportionality) are found to be more accurate when the subsystems are weakly coupled and
when the frequency bands of interest contain many interacting modes. Weak coupling
requires that the local dynamic interaction of two subsystems is not significantly affected by
the presence of additional subsystems [1], or that the effects of coherent power at the coupling
between subsystems are negligible [2]. When the coupling becomes strong, coherence effects



are important and the interaction of two subsystems can be dependent on the global properties
of the system.

At low frequencies the response of a structure is normally predicted using numerical
techniques such as the finite element (FE) method. A discrete description of the continuum
leads to mass, stiffness and darnping matrices which represent the spatial distribution of these
quantities in terms of a large number of local shape functions. The vibrational response is
then normally described in terms of frequency response functions, such as point or transfer
receptances and nobilities. To simplify calculation of these quantities, a modal analysis is

usually performed and mode shapes and natural frequencies found from an eigenvalue
problem. Often, one of the criticisms directed at the use of finite elements at higher
frequencies is the use of such response coordinates. Since frequency response functions are

obtained from a summation of vectorial quantities (in a modal summation), they are sensitive
to perturbations in the modal properties. The use of frequency response functions can also

leave the analyst swamped with a vast amount of information. However, it is important to
note that this criticism should be specifically directed at the use of an inappropriate response
coordinate rather than at the finite element method in general. The results from a finite
element model can equally be viewed in terms of spatizd and temporal averaged energies and
powers.

It is perhaps worth reiterating some of the specific problems associated with the use of
FE to describe the vibrational response. The FE method can be computationally restrictive,

the number of elements required to adequately describe the spatial fluctuations in the response
increasing rapidly with frequency. The computational expense of the eigenproblem also
increases rapidly with the size of the mass and stiffness matrices. Computational limitations
aside, the resulting response is only as accurate as the information supplied to the model.
Assumptions regarding boundary conditions and material properties can mean there is little
point trying to obtain more accuracy out of something that is inherently uncertain. In the
traditional FE approach the results are also deterministic, and therefore do not account for the
effects of uncertainties.

There are, however, circumstances where a FE model can be useful in determining the
vibrational response of a structure at higher frequencies. The next section discusses the form
of various energy flow models. This is followed by a discussion of how FE and component
mode synthesis (CMS) can be used to derive an energy flow model of a system. The
vibrational behaviour of a system comprising three coupled plates is used as an example, and
the effects of ensemble and frequency averaging the FE/CMS results is investigated. The
results are also compared with an SEA prediction.

2. ENERGY FLOW MODELS
In an energy flow model of a structure, the vibrational energies within various component
parts, or subsystems, of the structure are related to the input powers applied to each excited

subsystem. If the excitations applied to each subsystem are statistically independent, then the
time average input powers Pi., and the time average response energies E, in each subsystem
are linearly related by

E= APin
(1)



where A is a matrix of energy influence coefficients (EIC), Ati indicating the amount of energy
stored in the i ‘th subsystem due to excitation of subsystem j. Knowing the matrix of EIC’s
enables the response to a particular distribution of excitations to be found. Equation (1) can
be written as

Ph=HE
(2)

where H=A-l. In an SEA model and when the system is weakly coupled, the elements of H
take on a particulm physical significance, and are related to darnping and coupling loss
factors. If the system is strongly coupled, or if finite frequency averages are taken for a single
system (as opposed to ensemble average powers and energies in SEA) then the coupling loss
factors inferred from inverting A maybe negative, zero or infinite [3]. Furthermore, in certain
circumstances this inverse may not even exist. In this paper the emphasis is placed on

estimation of the EIC matrix A. The problem is then how to calculate this matrix for a
particular structure, or a particular population of structures. The numerically efficient

calculation of A from a finite element model is discussed in this paper and in [4], with an
example of three coupled plates being considered here.

3. COMPONENT MODE SYNTHESIS
In a standard finite element model of a structure, the response is described in terms of a large
number of local shape functions. The size of the finite element model can be reduced by

choosing a more appropriate basis with which to span the space of possible responses. In the
component mode synthesis (CMS) approach [5], this is achieved by first obtaining a set of
local component modes. These can include the normal modes of a substructure (when the

substructure interface is subject to certain boundary conditions), and constraint modes of the
substructure. The constraint modes represent the shape of a substructure when a particular
interface degree of freedom is given a unit displacement or rotation whilst all other interface
degrees of freedom remain fixed. The component modes of the structure are then used as a
basis with which to describe the global response. By choosing fewer component mode
degrees of freedom than nodal degrees of freedom, the size of the model can be significantly
reduced. The component modes can be thought of as representing the local dynamics of a
substructure, whilst the constraint modes provide coupling between substructures. This
philosophy fits well with SEA, since the local dynamic properties are used to describe the

global dynamic properties. Choosing subsystems that correspond with substructures
simplifies the calculation of the energy flow model.

4. KINETIC ENERGY AND INPUT POWER
k this section, expressions for the (time average) kinetic energy and input power to various
subsystems are derived. The potential energy can be calculated in a similar manner but is not
considered here. A fixed interface CMS model is used, with the response coordinates being
the component mode amplitudes. The global mass and stiffness matrices are found using

CMS, and a free vibration analysis performed to determine the global mode shapes and
natural frequencies.



4.1 DISCRETE FREQUENCY RESPONSE

The time average kinetic energy in the a’th subsystem of a structure is given by

()‘k (a) =:~Mj,Re{Q;Q,}
j,ka

(3)

where M is the component mass matrix associated with the a ‘th subsystem and Qk is the
response of the k’th component mode. The summation here runs over all component modes
j,k in subsystem a. The component mode response is given by

Qj = ~ pj.~mFy,m (4)
m

where am is the receptance of the m’th global mode given by l/(0~(1 + iqm) – C02), P is a

matrix of global mode shapes, Fy,~ is the force applied to global mode m, ~ is the m’th

global natural frequency and q~ is the loss factor of the rn’th global mode. Here the
summation is over all global modes m that contribute to the response. The global modal
forces can be related to the forces acting on each individual node in a subsystem b by

F’y,m=~p#Q,r=~pm~’I’.ft (5)
reb reb reb

where FQ,r is the force applied to the r’th component mode in subsystem b, ft is the force
applied to the t’th node in subsystem b and T is the transformation matrix relating nodal and
component modal degrees of freedom. The summation over r runs over all component modes
in the excited subsystem b, whilst the summation over t runs over all nodal degrees of
freedom in the excited subsystem. Substituting equations (4) and (5) into equation (3) and
rearranging the order of summation gives

()
(B2

‘k (a) = ~ Z[z
1

M jkpj.pkp ~ l’J’.p ~ TfrTU Re{ft”fuam”ap}
m,p j,kea r,seb t,ufa

(6)

4.1.1 ASSUMED EXCITATION - “RAIN-ON-THE-ROOF”

Let us now assume that the distribution of nodal forces is such that, when averaged over time,

the product of nodal forces ft’fu is real and proportional to the (t,u)’th entry in the local nodal

mass matrix m, i.e.,

ft”fu= Rma (7)

where R is a constant of proportionality. This assumption is similar to assuming that all nodal
forces are uncorrelated and that the magnitude of the force squared applied to each node is



proportional to the amount of mass lumped at that node. Such loading results in equal modal
forces and is hence the equivalent of “rain-on-the-roof” when phrased in terms of component
modes. Equation (6) then becomes

.

The terms ~ are referred to as distribution factors [6], and quantify the degree to

(8)

which each
global mode is spatially distributed over the responding and excited subsystems, whilst the

term ~ is frequency dependent. The (m,p)’th distribution factor can be found by pre- and post-
multiplying the local component mass matrix M by the appropriate partitions of the m’th and

p’th global modes respectively. The distribution factor ~~ indicates the proportion of

kinetic energy stored in the a’th subsystem, when the system vibrates in the m’th mode. The

terms ~$) (m # p) give an indication of the orthogonality of global modes m and p over

subsystem a.

4.2 FREQUENCY AVERAGE RESPONSE

We are often interested in the response to broadband excitation rather than the discrete
frequency response. This can be found by integrating equation (8) over frequency and noting

that only the term & is frequency dependent. If the power spectral density S“ of the

excitation is constant, then R is also constant and the frequency average value of P between

frequencies al and @is given by

where

and Q=co2 -@l. Whilst this expression is useful for calculating narrow band responses, or

calculating responses where modes partially contribute (ie. where modes lie close to 01 or ~),
it can be simplified for larger frequency bands. If it is assumed that a mode lies within the
bandwidth of excitation, and the darnping is light, then the limits of integration can be

replaced by O and co to give the approximate frequency averages

r In= —— . ..(A’/(A2+(0.WBp)’)), rw,.=r
““ ~ 877co~

(11)

As discussed in [6], the magnitudes of I’v determine which cross modal pairs (nz,p) give

significant contributions to the response. The time average input power to subsystem b can be



calculated in a similar manner to the kinetic energy and is given in terms of the distribution

factors ~~ associated with the excited subsystem by

(12)

5. ENERGY DISTRIBUTION IN A THREE PLATE STRUCTURE
As an example of the application of the expressions derived in the previous section, consider a
structure comprising three coupled plates. Each plate is rectangular and joined to the others
along two of its edges, the uncoupled edges being unconstrained, as shown in Figure 1. The
nominal plate dimensions and material properties are given in Table 1. A finite element
model of the structure was implemented in Matlab using Heterosis plate elements [7]. The
lines of coupling were assumed to remain fixed in space and be simply supported. Each plate
was modelled with 100 elements, from which 35 interior modes were calculated (the highest
uncoupled natural frequency being above 6 kHz). The first 100 global modes were calculated
using subspace iteration, with the highest computed global natural frequency being

approximately 6 kHz. The matrix of EIC’s for the structure was then calculated, assuming
that when frequency averaged, the total subsystem energy is twice the kinetic energy.

5.1 SINGLE REALISATION FREQUENCY AVERAGES

Figure 2 plots the 200 Hz and 1 kHz frequency average EIC’S for a single realisation of the
plate structure against frequency, and the results of an SEA prediction. There are
approximately 3 global modes in a 200 Hz frequency band. When averaged over a narrow
frequency band, the EIC’S between subsystems show distinct resonant behaviour. When
averaged over a large frequency band it is seen that SEA tends to over predict the response in
the undriven subsystems. This is due in part to the effects of coherent reflections at the

coupling [2] with the plates being strongly coupled (y being approximately 2.5 between each
pair of plates at 1 kHz).

5.2 ENSEMBLE AND FREQUENCY AVERAGES

h order to investigate the effects of ensemble averaging on the EIC’s, a monte-carlo
simulation was undertaken, with the material properties of each subsystem, and the leading
dimensions taken as uncorrelated random variables. Whilst this approach is computationally
impractical for larger problems, it provides useful insights into the effects of ensemble
averaging for this example. The ensemble was defined by perturbing the material properties

of each subsystem, and the leading dimensions of the structure, uniformly between + 2.5% of
their nominal values. The frequency average EIC’S, averaged over a 200 Hz frequency band,
were obtained for 100 separate finite element calculations. The statistics of the EIC’s across
the ensemble, such as the median, lower and upper quartiles were then obtained and are
shown in Figure 3, along with the SEA prediction. Distinct resonant behaviour is still

observed even when ensemble averaged. This can be attributed to the effects of averaging
over a narrow frequency band and mid-frequency effects. Mid-frequency effects occur when



the population of plate structures under investigation does not contain enough uncertainty to
be adequately modelled by the SEA ensemble.

60 CONCLUDING REMARKS
In this paper a computationally efficient method for determining an energy flow model from a
finite element model was described. Expressions for discrete frequency and frequency

average responses were given in terms of component mode synthesis. The method was used
to calculate the energy distribution in a structure comprising three coupled plates, and
ensemble and frequency average results were compared with SEA predictions. It was
observed that SEA can be in error, due to the effects of strong coupling and finite frequency
band averaging.
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Ld

7
Plate thickness

Young’s Modulus
Density

Poisson’s ratio

255 mm
225 mm
275 mm

0.05
10 mm

4.6 GNlm2
1130 kg/m3

0.25

Figure 1. System comprising 3 coupled plates Table 1: Properties of system
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Figure2. Plot of EIC’Sagainstfrequency(in Hz). Positionof plot relatesto positionof EIC in matrixA,
--- SEAprediction;FE/CMSsinglerealisation, 200 Hz frequencyaverage,— 1kHzfrequencyaverage.
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Figure3. Ensembleand frequency averaged EIC’S;darkgrey,maximumandminimumvalues;lightgrey,
upper and lower quartiles; .... median; — SEAprediction


