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Nonlinear vibration signals are more well-defined and established than nonlinear noise
signals which most works are dealing with electronic noise and the unwanted noise in
signals.In this paper,we will consider nonlinear industrial and machinery noise,in particular
non-Gaussian noise and chaotic signals and nonlinear vibration signals. First we consider
chaotic signals. Here two types of fractal finctions are used to represent them:the
Weierstrass fi.mctionand the radial basis flmction. These iimctions have to be subjected to
computation of their fractal dimension. The HausdoriT definition of fractal dimension is
used. Next the technique of higher order statistics is used to process nonlinear noise and
vibration signals. The bispectrum is used which is a nonlinear generalisation of the spectral
approach to linear time series analysis. Here we review the method of estimation of
bispectrum and study possible applications to non-Gaussian signals,such as chaos. We find
that the estimated bispectrum could be used to distinguish between nonlinear deterministic
stable systems and nonlinear deterministic chaotic systems. We also consider the
properties of one nonlinear model,namely bilinear model and study their application
nonlinear noise and vibration signal processing.

INTRODUCTION are linear in nature.This results in the loss

to

of
phase information contained in the indivi-

Most of the noise and vibration signals dual signals.Sofw the the noise and vibra-
in nature are nonlinear in nature.Conven- tion instrumentiontation industry is based
tionally the Fourier analysis using the super- on the Fourier analysis and the resulting
position principle assumes that the signals autocorrelation fimction,crosscorrelation



fl.mction and power spectrum. During the
past few years there has been the beginning
of the treatment on the nonlinear nature of
noise and vibration signals.Whh the rapid
increase of computation power and also
within economical reach, the incorporation
of the nonlinearity of noise and vibration
signals becomes a commercial reality.In this
paper we consider nonlinear industrial and
machinery noise,in particular non-Gaussian
noise and chaotic signals and nonlinear
vibration signals.

CHAOTIC SIGNALS

In nonlinear noise and vibration systems,
a fi-equently encountered signal is the
chaotic signal. A wellknown chaotic noise
signal is aerodynamic noise which is due to
turbulence. In this paper we will limit the
scope of signal processing only to spectrum
analysis. For linear signals,Fourier trans-
form is used to compute the autocorrelation
fi,mctionand hence the power spectrum. For
nonlinear signals,Fourier series are not
applicable and other time series representa-
tions are necessary. For chaotic signals,
which are fiactal in nature,we look for time
series with fractal properties. We will test
on two fhnctions:(a)Weierstrass non-
differentiable function, radial basis
fhnction.

A. Weierstrass non-differentiable finction

Fourier series involves a linear progres-
sion of frequencies. The Weierstrass fhnc-
tion on the other hand,involves a geometric
progression:

Vw (t)= ~ A. R* sin(2zr-nt+@~ )
“.-

(1)
where A” is a Gaussian random varriable

with the same variance for all n,n is a

random phase uniformly distributed on (O,
27c)>R~= l/f” ,f. = discrete fi-equencies and

H=2-D where D=fractal dimension for the
case of fiactionrd Brownian Motion (fBm).
The fractal nature of the Weierstrass
fimction means it is self-similar and
nowhere differentiable.

The usual procedure is spectrum analy-
sis.This is to calculate the power spectrum
density (PSD) using Fourier transform and
correlation fi.mction. This is correct only for
linear noise and vibration signals. For
chaotic signals which are also fractal and
nonstationary in nature,we will first
represent the time series by a flactal
fhnction instead of the usual Fourier series
and compute its PSD using the Wigner-
Ville theorem which is applicable to
nonstationary signals. We call the resulting
power spectrum “fracture” to differentiate it
from the power spectrum of stationary
linear signai.

The first step is to test whether the signal
is chaotic in nature.This can be done by
computing Lyapunov exponent.
Lyapunov exponent can be defined as:

where f (x” )= x ~+,= one dimensional map.
A positive Lyapunov exponent will confirm
that the signal is chaotic. A chaotic signal
will have fractal characteristics. Hence the
next step is to compute its fractal
dimension. We choose the Hausdorff
definition of fractal dimension which gives

D= .hN

ln(l I r)
(3)

where N= number of self-similar parts and
I= size of ruler.

The next step is to compute the PSD
using the Wigner-Vdle theorem. Before that
we have to calculate the covariance
fhnction which is the point autocorrelation



fhnction defined by we can rewrite ( 7 ) as in linear equations in
m unknowns:

R ~ (~)= ~ V(t) V(t + z)dt (4)
Oa=y—— (9)

where V=VW (t) for our case. where y and k are the vectors with elements
y, and k, ,i=l,.., m.Everything is known

The Wigner-Ville spectrum of a nonsta-
except A, ....k~ .Solving (9) therefore,

tionary process f(t) with covariance
iimction R ~ (t,s) is given by determines f completely where f is the radial

basis approximations tog and is defined by

wf(t,~)=~’ R f (t+ ~ ,t-~ ) e-’”’ dz qz)=: ~1$(1 z-z, 1) (lo)

(5)
The required PSD,the Wigner-Ville spec-
trum will be obtained by substituting (1)

and suppose that from experiment, values

and (4) into (5).We call this resulting
y] ...y~ of y have been found at xl ...x~

spectrum,the’cfractum’’because it represents Then we have y, =g(xl ) for i=.....m.

the characteristics of a fiactal signal without Computationally,the significant part of

using the linear representation of Fourier the problem is that of solving the linear

series, equations (9) for k .The size of the matrix Q
is the number m of data points and so the
computational effort which is of order .....

W ~ (t,o)=~m ~’” ~ An Rfi sin[2xr””4-W may be large.Fortunately,this calculation is
n.-m

only petiorrned once for a particular set of
(t+; ) +~n ] ~ A. Rtisin[2nr-n data points and O.The work involved to

n.-m interpolate for any given point is then

(t-~ )] e-~o’ dz (6) considerably less,of order m.
For our purposes,we shall assume that

B. Radial basis fimction
the number of data points required is
sufficiently small (up to a few hundred with

Radial basis finctions (RBF) can be
used for extrapolation as well as interpola-
tion and are attractive for nonlinear
modeling such as chaotic modeling. We
require that the interpolation be exact at the
known data points. Then

current workstations) that numerical and
computational difficulties do not nominate
the problem.

The next step is to introduce fractal and
chaotic characteristics into radial basis
iimction.To start with, the chaotic signal
usually takes the form of a time series.To
construct a dynamical model from a time

Yl=~ ‘j 0(1 Xt-Xjl)
(7) series,we apply the phase space reconstruc-

,=] tion technique to the chaotic data sequence.
The general technique of this approach is to

for i=l, .....m,where $ is the radial basis generate several different scalar signals
fimction.Writing the matrix 0 with element v ~(t) from the original v(t) in such a way as

to reconstruct an m-dimensional space
%j=+(lx, -zj 1) (8) where,under some conditions,we can obtain

a good representations of the attractor of



the dynamical system.
The easiest and most popular way to do

that is to use time delays.We write

v ~(t)==(t+(k-l)~), k=l,..,m (11)

where ~ is the time delay.In this manner,an
m dimensional signal is generated, which can
be represented by the vector

~ (t)=(x , (t),x ~(t),. ..,x ~(t)) (12)

Note that,on varying the set of variables
which can be constructed from x(t),we get
in principle the same geometric information.
If d is the dimension of manifold containing
the attractor, Takens showed that m=2d is
sufficient to embed the attractor by the
Whitney embedding theorem.

Next we t~ to determine the possibility
of a nonlinear model for chaotic noise and
vibration signals by using a more rigorous
analysis,i.e.fractal dimension.Measuring
dynamical invariants such as fractal dimen-
sion and Lyapunov exponent has been a
widely used approach in detecting chaos.
The correlation
fractal dimension

dc=;:o h[c(r)]

tnr

dimension definition of
is used :

(13)

where c (r) = cumulative correlation. The
determination of the correlation dimension
is usually found by plotting c(r) versus r on

a /n-/n graph for different values of the
embedding dimension,m.

Having measured the correlation dimen-
sion we next assume that the dynamics can
be written as a map in the form

v (t + %)=F (V (t)) (14)

where the current state is v(t) and v(t+~) is
a fbture state. Since the only new

component in vector vJt+~) is the point
~ (t+~),the dynamical system(l 4) is equiva-
lent to the problem
from the vector ~(t)

V(t+T) =($[V(t)]

To reconstmct the

of prediction of v(t+z)
,That is

(15)

dynamical system (14)
weneedto produce ~(t+~)of v(t+ ~).
In other words,we need to approximate the

.
mapping $ by an approximation ~ and we

use the radial basis iimction as an
approximation for $.Hence the radial basis
fi.mction is determined within the
framework of a phase space reconstruction
for chaotic time series.

To use the Wlgner-VNe theorem,we
have to calculate the 2 point autocorrelation
finction for the radial basis approximation
in (1O),bearing in mind that the x’s are
finctions of time.The Wigner-Ville theorem
will give us the fracture.

HIGHER ORDER STATISTICS

The techrique of higher order statistics
(HOS) is used here to process nonlinear
noise and vibration signals.The bispectrum
is used.It is the simplest form of the higher
order spectrum.It is a nonlinear generalisa-
tion of the spectral approach to linear time
series analysis.Here we review the method
of estimation of bispectrum and study
possible applications to non-Gaussian
signals such as chaotic signals.

The bispectrum of a signal is defined as
the Fourier transform of its third-order
correlation flmction.That is,

B(f, ,fz )=~ ~ C- (m,n) exp

{-2zif, n-2;i f: m} (16a)

where C ~ =E[X(t+n)X(t+m)X(t)] (16b)



The bispectrum of the stationary process y ~. =
{X(t)} can be consistently estimated using a ‘ :X(gm,gn)
sample{X(o),X(l),.... .,X(N-l)}as follows 2. (21)

Let [N /M2]+f~(g~):.(g.):.(g.+gm)li

FXQ/N,k/N)=N-’ A~(j/N) A. (WN) where SAXis the usual (smoothed) estimator
A; [(j+k)/N] (17) of the power spectrum of {X(t)}

The bispectrum is being computed for
where j and k are integers and each record of aerodynamic noise according

to (19) and smoothed over adjacent
N–1

()–i2njt
‘N fi~= ~ x(t) exp —

frequency pairs with a square smoothing

N
(18) window five samples on aside.The

t=o

bispectrum will be normalized by the

Here AN (o) is set to zero,this is equivalent smoothed averaged power spectrum

to subtracting out the sample mean of
according to (21).

{X(t)}. FX(j/N,k/N) is an estimator of the

bispectrum of {X(t)} at frequency pair
(’j/N,k/N).However,it must be smoothed,i.e.
averaged over adjacent frequency pairs,in
order to obtain the consistent estimator

M-I

‘.(gm,g.)=M-2‘$j’ ~
j=(m-l)A4 k=(n-l),i’i

()jkFZ– —
k’N

(19)

where g ~‘(2j- l)~(2N) (20)

Now, ; ~(g ~,g” ) is the average value of

F(’j/N,lc/N) over a square, a M 2points
where the centres of the squares are defined
by the lattce L=[(2m-l)M/2,(2n- l)M/2:m=
1,...,n,and m < N/2M-N/2+3/4] in the
principal domain

This averaging procedure is precisely
analogous to smoothing the periodogram to
obtain a consistent estimator of the
spectrum.As in the averaging procedure,
smoothing reduces the sampling variance of
the cost of increasing the finite sample bias.
It can be shown that consistency requires

COMPUTATION OF BISPECTRUM FOR
CHAOTIC AERODYNAMIC NOISE

In order to carry out the computation of
the bispectrum for the chaotic aerodynamic
noise,we have to represent the chaotic noise
by Logistic Map,a wellknown chaotic mo-
del.Let the series be generated from the
model x(t+l) = ax(t) [l-x(t)], (t= 1,2,.. .500).
Interesting trajectories can be observed
when 3<a>4.Unstable trajectories (or
chaos) occur when a 2 3.5. In order to
observe this,the bispectrum 3has been
calculated for various values of a using the
product windows with the truncation point
M=32. The modules of the bispectrum
I~qo) I for several values of a from 3.0 to
3.9 are plotted in Figl .For values of a,
3 g a <3.4, the values of the modulus of the
bispectrum are very,very small. The values

are smaller than 10 ‘7(see Figs 2 and 3)
Though a ridge is found along the line
@,+@’= n in the bispectra,they are not

significant because their values are very
small.When a=3.5,these are three dominant
peaks:one at the frequency corresponding
to the period-four units.This is when period

that M be an integer exceeding N; and



doubling starts. The bispectral values ob-
tained when a> 3.5 are several times larger
than the corresponding values when a<
3.5.It is also informative to compare those
values with the values obtained for a<
3.4.These are several times higher.As the
values of a increases, several ridges can be
found in the modulus of the bispectrum,a
phenomenon
observed consistently in chaotic models. FIGURE 3 Bispectrum of sample (logistic)

with a= 3.1. (from T.S,Rao[3])
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APPLICATION OF BILINEAR MODEL
TO NONLINEAR NOISE AND
VIBRATION SIGNAL PROCESSING

If we find that the noise or vibration
signal is nonlinear,it is important to see
whether we can find a finite-parameter
nonlinear model to describe the series.One

such model is a bilinear model 3 ,whose
~ 3.0

analytic properties have been extensively
studied.Let x (t) satisfi the difference

FIGURE 1 Plot of If(co,o)l against a of the equation
logistic map. (from T.S.Rao[3])

EST. MODULUS OF BISPECTRUM x(t)+~ a,x(t-j)=e(t)+~ b] e(t-j)
,=] ,=1

+$,$,a,j x(t-i)e(t-j) (22)
1=1 j=l

210-7 The above model is called the bilinear
. model and is denoted by (p,q,P,Q).It is

linear in x(t),e(t) but not jointly.For

p=P,q=o,Q=l ,Subba Rao 3has shown that
one can write an equivalent state-space
form and then it is easy to evaluate the
moments of the process x(t).The solution of
the equation can be written in the form of
Volterra series.It is observed that when the
coefficients of the nonlinear part of the mo-

FIGURE 2 Bispectrum of samPle (logistic) del tend towards the nonstationary region,
with a = 3.0. (from T.S.Rao[3])



the trajectories generated by these bilinear
models may produce behaviour similar to
chaotic models.

To apply the bilinear models to nonlinear
noise and vibration signal processing,we
have to consider certain special cases of the
bilinear model.One is the Exponential Auto-
regressive model (EAM) introduced by

Ozaki 4in an attempt to construct time
series models which reproduce certain
features of nonlinear random vibration
theory.

Nonlinear random vibration are typically
described by second-order differential equa-
tions of the form

,+
x (t)+f{ ; (t)}+g{x(t)}=y(t) (23)

where f{.},the damping force and g{. },the
restoring force are nonlinear functions and
y(t) is a stochastic driving force input.
Two examples are :
(i) Duffing’s equation

; (t)+c ; (t)+ax(t)+b{x(t)} 3=y(t) (24)

(ii) Van der POL’S equation

1 (t)+f{; (t)}+ax(t)=y(t) (25)

The three important nonlinear features
of nonlinear systems are :
(i) Amplitude-dependent frequency
(ii) Jump phenomena
(iii) Limit cycles

In order to construct time series models
(in discrete time) which reproduce the
effect of amplitude-dependent frequency,

Ozaki 4 started by taking,an AR(2) model of
the form

X, -a, X,_l-a2X,_a=e, (26)

and then allowed the coefficients a, ,a *to

depend on X,.l .Specifically,he proposed

that the coefficients be made exponential

iimctionals of X~_l i.e. take the form

With these values of a, and a2 ,(26) is

called a second-order exponential auto-
regressive model.

If,we ignore the fact that a, and a ~are

functions of X,_l and think of (26) as a
linear model,then its resonant frequency will
occur at the minimum of

and hence will change with the magnitude
of IX ,_l1.In effect,we are assuming that

locally X, behaves as if it were generated

by a linear AR(2) model with the
coefficients a ~, a ~,frozen at the value

which they attained at time t.
Note that, for large IXf_l 1,a ~-$, ,az -

@2andfor smalllX,_,l, a,-$, +zl,

a2-@2+7c,

Thus,the exponential AR model behaves
rather like the threshold AR model,but here
the coefficients change smoothly between
the two extreme values.

In addition to generating “amplitude-
dependent frequency’’effects,the exponen-
tial AR model can also give rise to jump
phenomena and limit cycle behaviours.It
should be noted, however ,that the class of
exponential AR models is not unique in
these respects: threshold autoregressive
models are also capable of generating am-
plitude-dependent frequency,jump pheno-
mena,and limit cycles.



General Model
machine failure under operating conditions

The second-order model (26) can be when conventional power spectral analysis
readily extended to a general-order model. could not distinguish the defects.The phase
Then,a kth-order exponential AR model is preservation in higher order statistical
given by, analysis also yields additional information

on noise and vibration sources.

X,=($, +7t1e -’~:-’)x,_,+...+

($k+7tke-yx:-’)X, .k+er (29)

Ozaki 4 has shown that necessary condi-
tions for the existence of a limit cycle for
(29) are :
(i) all the roots of

Zk -(), Zk-’ ....-(jk=o

lie inside the unit cycle,l ZI=1;and
(ii) some of the roots of

Z’.((j, +7t, )Z’-’ ....(ok+zk)=o

lie outside the unit circle.
A sufficient condition for the existence of a
limit cycle is then

(iii) 1 >1 or<O
z n,

The last condition is required to prevent the
occurrence of a stable singular point.

CONCLUSIONS

With the increase in computing power
and speed,nonlinear noise and vibration
signal processing is no longer an academic
exercise.In particular,the bispectrum
computation appears to have commercial
value.Real time bispectral analyses of
machine~ noise is capable to detect

REFERENCE

1, W.S.Gan, “Application of Chaos to
Industrial Noise Analysis’’,Proceedings of
IC~pp.E4-3,Volume Band 2,C,D,E
Beijing, 1992.
2. W.S.Gan, “Application of Chaotic
Theory to the Analysis of Aerodynamic
Noise’’,Proceedings of InterNoise 95,
pp.277-280.Newport Beach, 1995.
3. T.S.Rae, “Analysis of Nonlinear Time
Series (and Chaos) by Bispectral Methods”,
Nonlinear Modeling and Forecasting, edited
by M.Casdagli and S.Eubank.Proceedings
of the Workshop on Nonlinear Modeling
and Forecasting, pp. 199-226,Santa Fe,US~
Sep 1990.
4. T.Ozaki, “Nonlinear Models for Non-
linear Random Vibrations’’,Technical Re-
port No.92, 1978,Department of Mathe-
matics,University of Machester Institute of
Science and Technology,UK.


