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The phenomenon of wave localization in hydroelastic systems leads to the

strength concentration of radiation fields. The linear method considers the

process of localization to be the formation of nonpropagation waves (trapped
modes phenomenon). The presence of such waves in the total wave packet
points to the existence of mixed natural spectrum of differential operators
describing the behaviour of hydroelastic systems. The problem of liquid and
oscillating structure interaction caused the trapped modes phenomenon has
been solved (membranes, dies, plates and different liquid models). The areas

of wave localization have been determined. This areas depend on both the
parameters of oscillating structures and the liquid waveguide parameters (the
linear dimensions of the channel filled with liquid; the height from the bottom

to the liquid surface; the liquid density gradient according to the height, etc.).

1 INTRODUCTION AND STATEMENT OF THE
PROBLEM

The linear problem on wave propagation in the finite depth water has been studied in
[1]. The bottom topography influence on trapped modes characteristics thoroughly in-

vestigated in [2]. The problem on the standing wave formation localized in the area of

dynamical inclusions on the bottom of a channel is seemed to be very interesting and of

practical use. This paper is devoted to solving this problem.
There is a massive rigid die on the elastic foundation on the bottom of a three-

dimensional channel filled with an ideal noncompressible liquid. Cartesian axes are chosen



so that y is directed vertically upwards and x and z in the plane of the unperturbed bot-

tom. The coordinate origin coincides with the middle of the die (its width 2a). The
motion of the liquid is described by velocity potential 0(s, y, z, t) in the linear theory.
Velocity potential is found from the following boundary problem:

O.= + OyY + @zz = O, in the domain occupied by liquid, (1)

Ott + g@V = O, on the free surface y = h, (2)

@v =
{

uq on the moving part of boundary lx I < a

O on the rigid part [z[ > a, y = O
(3)

Where g is the gravity acceleration, h is the depth of the liquid in the channel, w is the
die displacement determined by the equation

a

ftfw~~ + Cw = p /( @t +gw)dz, [zI < a, y = O. (4)
-a

Where ikf is die mass per unit length, C’ is the die rigidity, p is the liquid density. Let us
consider the die as a wave surface having a constant cross-section in the z-direction and
oscillating with frequency u. The solution of problem (1)-(4) being found in the form:

W(z, t) = Re {woei[mz-W~J},

O(z, y, z, t) = Re {P(z, y)ei(~z-ut)}.

Substituting (5) into (l)-(4) we satisfy the following boundary

/

pxz+yyy=m2v, –~<x<+w,o<v

Py=:p, y=h

(5)

value problem

<h

(6)

(
.

%=~wojlx[<~, wv=O,lzl>a y=O

(d – MJ)wcl = pw /“ w(~)~~, 1~1< a Y=o (7)
—a

Where m is wavenumber, 6 = C–2apg. For 9(z, y) we require the “localization propert y“

~~mMlv912d.dY+~:mw2(.>h)d. <+~ (8)

In this case the energy of the wave mode is finite per unit length of the z-axis, and the

mode (or wave) is said to be trapped. Without the die the problem (6)-(7) leads only to

continuous spectrum starting with wb = gm tanh mh which is the cut-off frequency.

2 FREQUENCY EQUATION

The Green function allows us to express the solution of problem (6) in the form

p(z, y) = –(JWO /“ G(z - q,y,u)dq. (9)

Substituting (9) into (7)
frequency

e–

J–a

one can have the following equation to determine the natural

// (MW2 = –pw2 a G X – q, O,w)dqdx. (lo)
-a



The corresponding Green function G(z, y, u) is

G(z, Y,U) =
{

Ao(w)e-~”lzl +~~=1 Ak(u)e-~’l’l, ti<w~

iAo(w)ei<”lZl + ~~=1 Ak(w)e-(klzl, W > Wb,

where

2(0 cosh y~o 2& COS y~k
Ao=–

CO(sinh2h~o + 2hfo)’ ‘k= - <k(Sin 2h~k + 2hfk);

(O is the positive root of the below equation

(k is the positive root of the below equation

(11)

g( tan h~ = –W2, (k=@+~2, k=l,2, ... .

Remark: It has been shown that having been integrated, the series obtained in the

right parts of (9) and (10) converge.
Analyzing the obtained solution of the spectrum problem (9)-(11) one can come to

the following conclusions.

3 MAIN RESULTS

1. In the region of low frequency (w < wb) only localized waves can exist, and the

condition of lack of radiation (8) is always met. The analysis of frequency equation (10)

shows that its right part is positively determined increasing function. In this case, the
unique natural frequency can exist, when the following inequality is fulfilled

C > 2apg.

Then ~. satisfies the inequality

{ {y].O < U1. < min wb,

2. Above the cut-off frequency (w > Ub) the Green function is the complex, with

a consequent formation of surface traveling waves carrying the energy to infinity. The
condition (8) is fulfilled when

CO = ~, n = 0,1,...,

which is equal to the existence of the trapped wave discrete spectrum above the cut-off

frequency



In order that some trapped mode W1l~is the eigenvalue, it is necessary that it satisfies
the frequency equation (10).

When the frequency is equal to W1. than the right part of equation (10) has negative
values, and theoretically always possible to choose the parameters for the mechanical

system C, M and a so that the equation of frequency can turn into the identity, and W1l~

is the natural frequency
3. The existence of the discrete spectrum at certain parameters of the discrete spec-

trum of frequency leads to possible resonance oscillations in the given die-liquid system
under the action of harmonic forces which frequency coincide with the system natural
frequencies.

4 LIQUID OSCILLATION IN A PLANE CHAN-
NEL WITH RIGID SIDES AND AN INCLUSION
IN THE FORM OF A RIGID DIE.

A die of mass m and width 21 executes vertical oscillation on a plane channel filled with
inviscid compressible liquid of densit y p. The speed of sound in the liquid ~. The general
equation of the die motion and the state equation has the form:

W2P()-(n.+~,,)= --& , -m<z<m, O~y<H

-MU2U)0 = )’p(H,C)dt
-1

(12)

where W. e’ut — die displacement; H — channel height; P eiwt — liquid radiation pressure.

To get the uniqueness of a solution one should use the concepts of limiting absorption.

Using Fourier transform in the equation along coordinate z one can get for P(H, f):

P(H, f) = pow2 wf) ~w>l$ -tl)d( (13)

–1

where



The Green function is complex because the system has traveling waves that transfer

the energy of the oscillating die to infinity. With every other traveling wave harmonic
the frequency w is translated above the corresponding boundary frequency tik = n co/H.

(14)
Substituting it in the die motion equation one can have. a frequency equation. Integrating
the pressure along the die length, one obtains:

After some manipulations the expression has the form,

One has another form of the frequency equation:

WH w200~
–iklw2 -t- 2p@Jwctg-

P04 lW -iwl/Q = o
+ 4po~ ~1 ~e-7k’sh7d + ~ sin —e

% Q

(15)

(16)

(17)

The condition for existence of real roots in the equation is the lack of radiation behind
the die, when [z I >1. The last expression is complex because of the two last components
only. It is easy to verify that the imaginary part of them is determined by integrals that
have the form:

+1

/

ei(((W/CCI)2 ‘(m/~ )2)1’2 df = (),

–1

-H

/( ei( (W/rXI)2-(T~/~) 2)1’2df = 0,

-[

or

lw
sin —= O,. ... sin~nl=O

%

(18)

The last mentioned expression determines traveling waves of the pressure. It means that
if they vanish, it will lead to a real frequency equation. Show the existence of parameters



land Hwhichallow ustofind thereal frequency wfrom the equation. Solving the last

equation step by step one obtains:

u – y; (l/H)’ = rn’-~f; 4(1/11) = m’–k~,...; IV’(l/H)’ = m2–kN (19)~—

m=0,1,2,...; kj=l,2,...; j=1,2,... N

The domain of the parameter m variation is found from the inequality

frequency w~ location:
determining the

(20)

of equation for

l~<m<l~

m — is integers in the last inequality. It needs to solve the system

unknown J/H, kl, kz, k~.1 which must be expressed in terms of parameters m and kN.
In the general case it is rather awkward procedure. We can demonstrate it with some

examples.
When N = O the location of the frequency is the following:

O<um<y

Considering w~ = ? one can obtain for the parameter m:

Obviously the relation l/H >1 must be correct since m is an integer. The last mentioned
relation is a necessary condition for the real discrete spectrum existence between the first

and the second boundary frequencies. A sufficient condition is the solution to the equation
for mass M. When w~ = 7 the expression for the radiation pressure has the form of
a standing wave, because the travening modes coefficient vanishes. When y = H, z > 1,
the pressure has the form:

“w ‘(,$#)2-(@2)z1/2sh ((:)2 _(:)2)1’2

P.(H, z) = w~

‘=’ ($02 : (%92 e
(21)

Having determined the frequencies (name them trapping ones), one can find the value of
m, when these frequencies become natural. It is from the equation one finds:

where

WmH 4p~2ml
M. w: = 2p@Qlwmctg— + ~wrn ~ 7 ‘–Tkm[ ‘h~km ZG ksl Ykm

y’m=f(~-m’r’‘=127s0

(22)

The domain of integer value of m must ensure the inequality:



lm ‘=Q ~ _ &-@mp=iF
—xHT2 ~=1 [k2(l/H)z – ~2]3/2

+ctg.zl~o, o<zl<7r (23)

~From one can find z; such that the relation becomes zero:

;< Z;<T

Here, the natural frequencies are located in the domain:

o<wm+

It is one value of m only exits (m = 1) and one value of the discrete frequency only when

l/H =2.

If i/H >2 – m real discrete frequencies exist. The value of m is located in the domain:

O<m <m*

where m. is defined by the relation a/H previously. When N = 1 the real discrete

frequencies are:

27rciJ
w2=—

1’
l/H = &

37rcQ
w3. —

1’
(l/H)l = X; (1/H)z = /iii

The existence of the real discrete natural frequencies in the region of the continuous

spectrum is proven. It should be noted that, if a spring of rigidity c is connected to the

die it will change the domain of values m that satisfy the equation. In that case one can
always find some values of parameters m and c that satisfy, if n = O. Besides, there will
be some other values of m which satisfy the inequality:

Wm < *cJH (1/H> 1)

5 ELASTIC NONLINEAR SYSTEMS

Consider the following simplified model (the beam with nonlinear and linear inclusions)

Duzzzz + mutt+ Ku + f,(z)u + ~g,u3 = P(t, z) (24)

where z c (– co, m). To simplify, firstly let us assume the external force P = O. It is well

known that, in the linear case (g = O), for appropriate coefficients ~, there exist “localized”

and almost localized modes [3] describing special beam oscillating. For example, if we

take two inclusions j = J(z)+ J(z – 1), then one obtains the solution of the form

u = [Acos(wt) + B sin(wt)]!l!(z, w) (25)



where a(u) = (TTW2-K)*, W = exp(-alz[)+exp( -alz-l[)+A(w)(cos( az)+cos(a(x-t)))

and A is small, if the “resonance condition” is satisfied: la x 7r(2n + 1), n c Z. This
mode is the sum of exponentially damping contribution and the small harmonic tail

cos(ax) + cos(a(x – 1)). The pure localized mode corresponds to the case A = O.
The aim of this subsection is to investigate nonlinear evolution of such modes and

show the possibility of the coherent structure formation.

6 CASE OF SINGLE MODE

We begin, to simplify, with the case of a single almost localized mode (2). The natural
and classical approach for small nonlinearities, (assume, y is a small parameter), is to

suppose that these amplitudes depend on slow time ~ = ~t. Then one can apply the well
known Whitham principle [4]. For the localized modes, there exists a simple approach
leading to ordinary differential equations for slowly oscillating amplitudes A(T) and 13(~)

[5].
Let define the Lagrangian

Substituting (2) into this expression and integrating over “fast” variables z and t, one

obtain the averaging Whitham lagrangian L. Up to small corrections, one finds

~ = c&(dA/dT~ – d?/dTA) + CI(A2 + B2)2 + C2(A2 + B’)].

The corresponding motion equations can be easily resolved and describe slow oscillations

of A and l?:

A = acos(@T – TO)), B = crsin(ti(~ – TO)).

The frequency ti is proportional to the quantity A2 + B2 (that does not depend on time
T).

Finally, we see that, in this simplest case, the slow time evolution is defined by an

integrable Hamiltonian system with the single freedom degree.

7 CASE OF SOME LOCALIZED MODES

If, in system (1), the coexistence of some modes is possible, then the mathematical ap-

proach 2 holds but the results are more interesting. Suppose modes IPl, U2,.. .IJ. coex-

ist, with corresponding frequencies LJl,W2 j.... Let Ai(T) and l?i(~) be the correspond-

ing slowly oscillating modes. A nontrivial Whitham lagrangian (with nonlinear contri-

butions that define the mode interactions) can occur if the time resonance condition

O = Uil + wi~ + Qia +Ui4=OOr U= Wi1+Ui2– Ui~–ui~ = O holds, for some ~i~ from the

frequency set.
Repeating the calculations from the previous point, we find that the Whitham lagrang-

ian has the following general form



where the second sum describe different contributions connected with the 4-order resonan-

ces o = O. The corresponding equations for Ai and Bi, in general, are not integrable. They
can be analyzed by the KAM theory which can be used due to the condition ~ << 1. Due
to classical results, we know that they can describe quasiperiodic motions and moreover,

different chaotic occurrences (for example, Arnold’s web, homoclinic structures and etc.)
To conclude this subsection, let us note the important point. We can change the form

of ~ by a frequency and coefficient ~, g choice. Thus, in a sense, these coherent structures
are controllable.

8 NONLINEAR ELASTIC BODIES
INTERACTING WITH FLUID

As a simplest model, let us consider the beam (1) in a fluid flow. This flow can be
considered (to simplify) in acoustic approximations

and the force P in (1) has the form P = po@t(z, O). The influence of the fluid can
be easily taken into account in the limit of large frequencies ~j >> 1. Then for ~
one has the following asymptotic expansion ~ = ~j #j (z, ~, y, ~) cos(~jt), where ~j =

cllj(z) exp(iwjy) + .... Thus, one can show, that for high frequencies, the term P in (1)
can replaced to the usual simple dissipative term cut.

Repeating all usual procedure of two scale expansion, we can obtain some complicated
equations for amplitudes Ai, Bi. They contains, in addition to case 3, some dissipative

contributions.
The investigation shows that the coherent structures lead to slowly damping quasi-

periodic waves (with slowly oscillating amplitudes) which exist in the beam and the fluid.
The nontrivial structures occur as a result of the interaction of localized modes through

their tails.
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