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ABSTRACT
We consider a reservoir with a finite depth, covered with continuous ice. There is a
crack in the ice plate. We study and simulate diffraction of bending-gravitation waves
on the crack, using the theory of shallow water. We study also ener~, transferred with
these waves. Correctness of this simulation in a sense of satis~ing to the principle of
energy conservation is shown. We obtained, how different parameters have an influ-
ence on diffraction, energy flows and so on.

1. BASIC ASSUMPTIONS
1.1 FOR LIQUID
We consider a reservoir with a constant depth H and ideal, noncompressible liquid.
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Potential @(x, y, z, t) satisfjw to the Laplace equation: — — —= O.The

*+a#+az’
aoa~axa~ a~ag a<

kinematic condition at the surface is as follows: ~ ~ – ~ + ——+—=0(1).
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The kinematic condition at the bottom is as follows:= ~ + — — — = o (2).
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1.2 FOR AN ICE PLATE
a’< D *

The equation of he bending plate vibrations is as follows: p ~~ + ~ A < = O (3),

where <(~ y, t)- plate deflection, p,- ice density, h - ice thickness, D - plate regidity.



1.3 CONTINUOUS ICE ON THE WATER
Now let us consider an ice plate, lying on the water. In this case we have to add to the
right part of(3) a force, acting from the water on per unit plate square - liquid pressure—

am
p. For the pressure in waves we have: P = – ~ – gz , where p - water density, @ -

P
velocity potential. In our case z = <.
So we get a dynamic boundary condition for the system {<continuousice on the water}):
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DA2<+p1h~+P(at — + g ~ ) = O(4) .Thus we get our model in the form of the

Laplace equation and 3 boundary conditions:
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If H =const then from (2) we have at the bottom: ~ = O.Neglecting the small
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terms of (1) we get for the liquid surface: — = —at ai
2. SHALLOW WATER
2.1 PLANE WAVES ON SHALLOW WATER
Now let us use the theory and the equations of shallow water. For harmonic vibrations
it was shown [1], that this approach requires H <C k , where Z- wave length. The
potential @(x, t) doesn’t depend on y (because we concider plane waves) and on z .
For this simulation for the surface of reservoir covered with ice we have:
D a’< a*q am
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If an ice plate isn’t irdlnite, then outside it at the bee water surfhce we have:
a *O i a%—_— — =O (7). We assume the ice plate to be enough light, so that the
ax2 gHatz

depth of dipping: h*= h $<< H

2.2 CONTINUOUS ICE ON THE WATER BY STEADY-STATE
HARMONIC VIBRATIONS

aq<
From (5) we get: D —
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+pg<(l+— — — = O. We designate
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We will leave out e–ico t
hereafter. Boundary condition (6) gives us:



< =‘~ ~ (7). SOthe Potenti~ ~ must satisfYto tie following equation by
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appropriate radiation condition: —Y+(l-(=) )~+~~=o (8).
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Let us look for < as a traveling bending wave ~ =& j f? ‘ikx . Accordingly, we get
~ikx

a solution of the Laplace equation in the form of a surface wave: 0 = 0 je .

Let us consider potential 0 as follows: @= 0 je a j x. From the equation (8) we get

the algebraic equation, which has 6 roots: al and ct2 are imagim-uy,the other are
complex and Re(a~,l ) >0, Re(ct~,6) c O. The potential will be as follows:

t0= Oje ajx. Solving equation (8) for potential@= Oie ‘(h–o’) by shallow
j=l
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water we could also get the relation o = o(k): co2= ~ (9)

2.3 FREE WATER SURFACE BY STEADY-STATE HARMONIC
VIBRATIONS
For a free water surfhce inside the crack we have (7). We consider steady-state
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harmonic vibrations, consequently we get: ~+ —@= O(10). We could also get
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this equation from the equation (8), if h + O.Let us find a solution of (10) in the

following fOrrn: @= mjea jx. Substituting@ in (1O)we get a characteristic equa-

tion, which has 2 roots. They are components of general solution of (10) :
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<(1 1). The wave number for the free water surface() , ~*1,2 = ‘i gH
gH

6.2
will be as follows: k*= — .
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3. CRACK OF FINITE WIDTH IN ICE PLATE
Let us consider diffraction of bending-gravitation waves z
on a crack, which is parallel to the wave front. We set the
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origin of co-ordinates in the center of the crack. There is
a piane wave, traveling from the right to the left with
unit amplitude. x
General solutions for 2 half-infinite plates and for the fi-e
water surface are as follows:
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By x -+~co potentials 01,02 are limited, therefore: @lq=@ld = O, ~zs =~zb = O

because Re(a~,d) >0, Re(a~,c ) <0. There is no incident wave from the left, therefore:

@22= O.Thus, taking into account (11):

q=e-ih+Reik+q5ea5x +q6ea6x

q =Te ‘ik+023e a3x+m24ea4x
~ _ ~ e ik*x+@q2e–ik*x
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So, we have 8 unknown quantities. Therefore we have to get 8 boundary conditions
by 4 on every free boundary of the ice plate: equality to zero of bending moments and

shearing forces on each boundary .LJsing(7) we get: ml ~=~= @3 ~=~;

One can show, that the approach with a zero - crack is a special case of the approach
with a crack of finite width, wenn a crack width 2a -+ O.

4.DEPENDENCE OF THE REFLECTION COEFFICIENT ON
THE CRACK WIDTH
Theobtained results let us fi.dfila computation, which let us find a dependence of
reflection on the crack widtlx

o 2.5 20 37 55 a ,m

where H=8 m, h=4 m, -0.4, max(lRl2) = 0.045

5. ENERGY FLOW
5.1 ENERGY FLOW THROUGH ANY RESERVOIR CROSS
SECTION
Now let us consider an energy flow in liquid through any cross section. We assume,
that water take up volume V, which is limited by surface S. Energy in volume V
consist of kinematic and potential energy. For energy E in volume V we have:
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E = P jjj{:[ (%)2 +(%)2+ (~)2 ]+ gz dxdydz. Using the Bernoulli low:,2
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(—+– VX2+VY2+Vz2)+E+gz=C(t) with C(t)= 0, weget:
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E = – ~~~(p+ p ~)dxdydz. Let us determine ~. If any fhnction
v
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F= ~~jf(x, y, Lt)dxdydz, then: ~= ~J~a dxdydz + ~~f VndS , where V. is
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normal velocity of S. We assume, that S is fixed, therefore: V. = O . Thus we get:
dE
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———=grad@gradxaz at az .Using the Green formula:
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~~~{UAW + (gradU, gradW))dV = ~~U ~S and because A @= O we get for ~:
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a~ aaI—— dS. The principle of energy conservation in integral form is as
X=p~ i3tan

dE
follows: ~+ JJJ div ii dV = O , where ii - vector of energy flow. Thus we have:

v

~+ ~~(ii,ii)dS=O andforanenergyflowindirectionOX: .x= p~~ .
s

ITxaverages : (%),=~p~ ~~dt

In order to determine an energy flow through any reservoir cross section under the ice
plate we have to integrate energ flow per unit depth ( ZX), :

For stead-state harmonic vibrations an energy flow under ice plate will be as follows:

5.2 ENERGY FLOW IN ICE PLATE
From [2] we get the formula for an energy flow of plate bending vibrations:

a~ a~ a<
ii=D{ gradA< ~ – (1– o)(grad ~, V)grad~ – uA&grad ~ } (13)

We consider stead-state harmonic vibrations. (13) averages:

(ii) = ~ Im {GA< grad~ + (1– cr)(grad~, V)grad~ – ~ gradA< ) (14). Let us
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determine components of (14): grad~ = —

a~(x),
ax I; <’~(x); mdc=~l;

Consequently for ( ii) we get:



For shallow water, using (7), we have:

In order to get a fi.dlenergy flow through any cross section of reservoir covered with
ice we have to add an energy flow through any cross section of ice plate and energy
flow through any cross section of reservoir with water under ice plate. Thus, from (16)
and (12) we can determine a full ener~ flow through any cross section of reservoir
covered with ice in direction X-axis:
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n “gIm{ ~ ax’ “ ~xs ~xz1 +Hp ~ Im ~ Odz (17).

If h=O( there is no ice ) we have D = O and the full energy flow is equal to the energy
r?m–

flow in reservoir with free surface: ( z ) = Hp~ Im ~ @dz

5.3 SATISFYING TO THE PRINCIPLE OF THE ENERGY
CONSERVATION
a) ANALYTICAL:
h enerjg flow must be equal in every cross section of the reservoir in his different
parts: with free surfh.ceor covered with ice. Let us consider an energy flow through
anYcross section of reservoir with free surilace (inside the crack). Energy flow is given

.

as (12). If the potential @= @Oeaxe–l@t, then the energy flow ( z ) doesn’t depend

on the X and consequently it is the same in any reservoir cross section inside the
crack. Now let us consider an energy flow in any cross section of the reservoir covered
with ice (on the leil and on the right of the crack), which is given as (17). It is the
same in any reservoir cross section outside the crack, because the energy flow doesn’t
depend on X. So it remains only to check a value of the energy flow at the crack

1
i3m3 –

boundaries by x = *a.We must get an equality: p; h ox—03dz=
-H

the potential in the crack, 01 - the potential outside the crack (to the lefl or to the
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right). Boundaty conditions — = Oand :;~ = O bring to zero the first item. Thusaxq
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p~Imx@~dz= 1
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we get: p;l.rn ~ @ldz .This equality is always true,
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because of boundary conditions: @l =03 and ~ = ~. Thus our simulation

satisf@ to the principle of energy conservation.



b) PRACTICALLY:
Let us estimate a value of energy flow through any cross section of reservoir inside the
crack. There are 2 traveling waves inside the crack. So we have:

* *
m=031eik ‘+032e–ik ‘. Wegetfiom(12): (n)= ~k*(l@~112 ‘l”3212)Ho
For a value of energy flow outside the crack (for example to the right) we get from

(17): (z) =~k(lTi2)H+ ~Im { (ik)4T(-ik)3~- (i k) ’T(-i k)2 ~ }=

DH2
=~k(l~2)H+— k71~2.Using the computed values of coefficients K and T we

cl)
make sure, that our simulation satisfis to the principle of ener~ conservation.

CONCLUSIONS
1.
2.

3.

4.

5.

6.
7.
8.

9.

The reflection coefficient depends periodically on the crack width;
The value of this period depends on the length of the gravitation wave at the free
liquid surface;
The reservoir depth and the wave frequency have an influence on the period by
means of influence on the length of the gravitation wave at the free liquid surface;
The ice thickness has an influence only on the value of the reflection coefficient
(and on the amplitude), and also on the displacement of the graph along X-axis;
The value of period is equal to the half of the length of the gravitation wave at the
free liquid surface;
The reflection decreases with increasing of the reservoir depth;
The reflection increases with increasing of the ice thickness;
By shot waves an ice plate carries the greater part of the energy than by long
waves;
By shot waves an ice plate carries the greater part of the energy than the water in
reservoir.
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