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ABSTRACT

Begining with the work of Mammano and Nobili it is shown that in the passive state the
cochlear partition may be modelled as an array of modally uncoupled independent
mechanical oscillators. While uncoupled modally the oscillators of the cochlear partition
are strongly coupled hydraulically through the forcing fields of the stapes and all other
segments of the cochlear duct. Consequently, each mechanical oscillator of the cochlear
partition responds modally in forced response dependent upon the motion of the stapes and
the motions of all other segments of the cochlear partition. It is shown that the oscillators
of the cochlear partition are linear in passive response to sound pressure levels of 110 dB
re 20 pPa. Evidence is presented in support of the assumption that in the case of active
response unclamping may be assumed to vary on a time scale which is long compared to
the period of sound in the audio frequency range. In the latter case active response of the
cochlea may also be described in terms of the same system of linear oscillators as in the
passive case but with variable darnping. It will be shown that the proposed active model
is in good agreement with available data.

INTRODUCTION

In a recent paper Mammano and Nobili (1993) describe a model of the cochlear
partition which is capable of responding in either a passive or an active state. In a passive
state the darnping factor is assumed to be constant and some large value. In an active state
the damping factor is assumed to be variable and may range between large and very small
as the model incorporates an unclamping mechanism based upon the motility of the outer
hair cells (Ashmore 1987, Ashmore & Brownell 1986, Brownell et al., 1985).

Mammano and Nobili introduce nonlinearity into their model through a variable
damping term. In the latter case the damping term is time dependent which, of course, may



introduce a considerable complication in determining an appropriate wave equation and an
exact solution. In fact, sufficient information for the purpose of producing such a wave
equation does not exist. However, in the passive state the damping term, h(z), is constant
and the solution is well known.
Mammano and Nobili describe the passive state response of the cochlea with a second order
differential equation with constant damping. They describe their proposed unclamping
mechanism and introduce it into their model as an addition to the constant damping term
with the implication that the active state may also be described by the same second order
differential equation as proposed to describe the passive state. The authors suggest no other
modification of their wave equation.

In considering the active state a great simplification is possible if it may be assumed
that the time scale for variation in h(z) is long compared to the period of variation of the
acoustic signal, 1/f, where f is the frequency under consideration. In the latter case of
slowly varying damping, relative to the time scale of the acoustic signal, h(z) may be
treated as a constant in determining a solution for the wave equation of Mammano and
Nobili. In this case the second order differential equation describing the passive state is
assumed also to describe the active state. It may then be assumed that to a first
approximation the solution for the passive state also applies to the active state and the case
of active unclamping. As will be shown observed nonlinear cochlear response may readily
be explained in terms of a linear model with variable damping.

In support of the proposal that the time scale of variation in the cochlear damping term
h(z) is long compared to the period of the sound which is detected, l/~ is the observation
that whereas about 10OAof the afferent nerves run from the outer hair cells about 50°A of
the efferent nerves run directly to the outer hair cells in their respective connections with
the brain (Spoendlin, 1972, 1978). Strong intervention of the brain in response to signals
sent to it is clearly implied in the function of the outer hair cells. In turn a time delay
sufficient to account for the proposed slow response also is implied.

In the guinea-pig the time constant l/f is about .007 seconds and in humans it is about
.05 seconds at the lowest frequencies of their respective ranges of audibility. At the lowest
frequency of audibility a periodic signal ceases to sound like a tone to humans and becomes
a series of discrete events. It will be assumed that the guinea-pig probably would find the
same effect to be true. This observation suggests that a processing time characteristic of
the brain that is long compared to 1/f is required to recognize separate periodic events.
Review of psychophysical data suggests temporal integration times an order of magnitude
greater than l/f in agreement with the proposal made here (Moore 1982). Here it is
postulated that the time required for processing of signals from the ear to the brain and
return of instructions to the ear will be subject to the same constraints as those controlling
temporal integration times and the change from recognition of tones to discrete events. In
turn these observations are consistent with the postulated slow response of the outer hair
cells.

Mammano and Nobili consider two possible forms of coupling between segments of
the cochlear partition. Coupling, which takes place through the fluid of the cochlea
between the sections of the cochlear partition, produces a force on any typical segment of
the cochlear partition in addition to that due to motion of the stapes at the oval window.
Such coupling will be referred to as fluid coupling. The resulting total force determines
the phase and amplitude of response but has no effect upon the characteristic frequency of
a typical segment. By contrast, coupling which takes place at the junctions between
segments will have the effect of perturbing the modal responses of the adjacent segments.
Such coupling will be referred to as modal coupling. However, as will be shown the



coupling between adjacent segments is negligible and thus any effect upon frequencies of
maximum velocity and displacement also is negligible.

In the absence of modal coupling the wave equation of Mammano and Nobili
describing wave motion on the basilar membrane in the passive state, is that of a series of
simple one-degree-of-freedom linear oscillators in forced response. In the passive state
when the damping factor is constant the wave equation shows that a typical segment of the
cochlear partition may be thought of as a linear oscillator and it will be convenient to refer
to a typical segment of the cochlear partition as an oscillator. The basilar membrane
traveling wave is explained in terms of the fluid coupling between all segments of the
cochlear partition while the frequencies of maximum velocity and displacement of a typical
segment of the cochlear duct are unaffected by any modal coupling.

In the following discussion the assumption will be explicit that both the passive and
the active states may be described with the same second order differential equation of
motion. It will be assumed that variation in damping takes place on a time scale which is
long compared to the period of the frequency under consideration. In either the passive or
the active state the system is linear and behaves as though the darnping factor were
constant. However, in the active state the damping factor may range in value from very
small to very large.

At very high sound pressure levels it is reasonable to assume that cochlear response is
passive. On the other hand, active response is to be expected at very low sound pressure
levels. In their Figure 4 Johnstone, Patuzzi and Yates (1986) show the expected variation
in response with variation in sound pressure level. At very low sound pressure levels,
where strong active response is expected, very peaked response is observed which
corresponds to very small damping in the region of resonance. For example, strong active
response introduced as unclamping has greatly reduced the inherent darnping in the active
state. As shown in the same figure in the region of resonance at very high sound pressure
levels, where passive response is expected, the response is broad corresponding to large
inherent damping in the passive state. In the latter case unclamping is nil. The figure also
shows that intermediate between very low and very high sound pressure levels unclamping
takes on intermediate values corresponding to intermediate damping between that of the
strongly active state and that of the passive state.

As may readily be shown the frequency of maximum velocity response of a linear
viscously damped oscillator is independent of darnping, but by contrast, as may also be
shown the frequency of maximum displacement response is dependent upon the system
damping (Tse et al. 1978a). Thus variable damping through some active unclamping
mechanism as proposed by Mammano and Nobili will not affect the frequency of maximum
velocity response but it will strongly affect the frequency of maximum displacement
response. The shift in maximum displacement amplitude from high to low frequency
shown in the figure of Johnstone et al. is the result of increasing damping with increasing
sound level. As the frequency of maximum velocity response is independent of the
damping, whether passive or active, in a system in which unclamping determines active
velocity response of the cochlea the “best frequency” for velocity response will remain fixed
over the entire auditory dynamic range (Lighthill 1991, 1996). It will be shown that the
cochlear velocity in passive response is linear to 110 dB re 20 pPa (110 dB SPL).

THE EFFECT OF LONGITUDINAL COUPLING

The cochlear partition may be modeled as a series of joined segments each tuned to a



lower frequency as one progresses apically from the basal end. When oscillators are
coupled in such a way that their properties are dependent upon their relative responses they
tend to influence each other and they are modally coupled. For example, strong modal
coupling between a pair of oscillators produces resonances which are not at all those of the
uncoupled pair; one resonance will always be higher and the other will always be lower
than the resonances of either oscillator taken singly (Tse et al. 1978b).

The segments of the cochlear duct may be thought of as oscillators each tuned to a
frequency slightly lower than the preceding oscillator as one advances apically along the
cochlear duct. The observation that the cochlea responds as though each segment were
tuned only slightly lower in frequency than the previous segment in progressing apically
strongly suggests that the modal coupling between adjacent segments is weak. On the other
hand, observed cochlear displacement response is described as a traveling wave (Pickles
1982). The large phase shifts of several wavelengths between the stapes and the point of
observation reported by Rhode (1980) implies a delay of several cycle between the energy
input at the stapes and its arrival at the point of observation. Such delay is only possible
if there exists some energy storage mechanism along the length of the cochlea as would be
provided by coupling between cochlear segments. One or the other of the coupling terms
introduced by Mammano and Nobili is crucial to an explanation of Rhode’s observations.

Lighthill (1991) has analysed the phase data of Rhode (1980) and he has shown that
the cochlear wave group speed has the remarkable property that it rapidly decrease as the
wave approaches a place of resonance where it stops and travels no further. As wave
energy travels with the group speed the implication is that energy introduced at the stapes
travels to the place of resonance and simply piles up and travels no further (Lighthill 1991).
The observation that a wave of a given frequency travels to the place of resonance and
travels no further is thus explained. For later convenience this phenomenon will be referred
to as Lighthill’s cut-off condition.

The implication of the observations of traveling waves in the cochlear partition is that
the motions of the segments of the cochlea strongly influence each other. As may readily
be shown longitudinal coupling between adjacent segments is negligible, but strong
coupling exists between any typical segment and all other segments through the fluid
forcing field (Lighthill 1991; Mammano and Nobili 1993).

To investigate the strength of the coupling between segments of the cochlear partition
reference will be made to work of Mammano and Nobili (1993) who have provided
estimates of all physical quantities involved and have proposed an analytic model of the
cochlea. They begin by formulating the basic dynamical equation of motion of the passive
cochlea in which they include all effects which may influence cochlear response. They
show that only modal coupling between adj scent segments through longitudinal viscous
shear forces may be of importance.

Mammano and Nobili begin their analysis by formulating the following differential
equation to describe
acoustic stimulus.

m(z)

the displacement response of the passive cochlea

at k(z)$ = F,(z, t) +FM(z, t)JZL+H(Z)=+
a t2

to an imposed

(1)

where



‘(z) =‘(z) ‘T%(z)A (2)

Here the equation of Mammano and Nobili has been written in terms of an operator H(z)
as given by Equation (2) which incorporates both the viscous darnping term, h(z), and the
longitudinal shear coupling term.

In Equations (1) and (2) all quantities are per unit length where z is the normalised
basilar membrane longitudinal coordinate along the spiral axis of the cochlear duct in the
apical direction extending from z = O at the stapes to z =1 at the helicotrema and ~(z,~ is
the resulting basilar displacement. m(z) and k(z) are respectively the effective mass
including fluid inertial effects and the stiffness of the duct per unit length. ~,(z, t) is the
force per unit length resulting from motion of the stapes and ~~~z, t) is the force per unit
length resulting from displacements of all other parts of the basilar membrane. These two
forcing fields result in the imposed acoustical signal on any oscillator of the array. As may
be shown the latter term provides the only significant coupling between segments of the
cochlear partition (Lighthill 1991) and, as shown by Marnmano and Nobili, it accounts for
the observed traveling wave.

Straight forward analysis, which makes use of data provided by Marnmano and Nobili,
shows in the case of greatest possible coupling the following:

H(z) _l

h(z)

As shown here for the case of greatest
oscillators is negligible. Consequently, the

= 3 .3X10-8 (3)

longitudinal coupling the coupling between
cochlea may be modelled as a linear array of

viscously damped simple one-degree-of-freedom linear oscillators. Voldfich (1978) has
experimentally investigated the properties of the basilar membrane of the guinea-pig and
has shown that in an immediate post-mortem preparation longitudinal coupling between
adjacent segments is negligible in confirmation of the latter conclusion.

DYNAMIC RANGE OF THE COCHLEA IN VELOCITY RESPONSE

In this section it will be shown that the velocity response of the cochlea is quite linear
at sound pressure levels sufficient to cause physical destruction of selected portions of the
cochlear partition. The demonstration will be based upon the observation that a linear
model can predict the observed destruction of hair cells brought about by two hour
exposure to narrow bands of noise at sound pressure levels of 109 dB and 110 dB re 20
pPa (Liberman and Dodds 1984a,b). It is to be noted that at sound pressure levels high
enough to cause hair cell destruction it is quite reasonable to assume that the ear responds
passively as otherwise the cochlea would be contributing to its own destruction.

In the audio frequency range the fluid in the cochlea is essentially incompressible thus
any slight pressure variation which might result from motion of the stapes acts upon all
portions of the cochlear partition at once and in phase. When a tone is introduced at the
basal end all of the oscillators which sense higher frequencies will be driven below their
resonant frequencies in stiffness controlled response. In the region in which the tone is
sensed the oscillator response will be controlled by the system darnping, while in the region
of the cochlea beyond, where lower frequencies are sensed, the oscillator’s response will
be greatly reduced by Lighthill’s cut-off condition and mass controlled.



It will be convient to introduce
undamped resonance frequency, JN,

the frequency ratio, x, the driving frequency, ~ and the
as follows.

fNx.
T

fN = & @i-

(4)

(5)

The expression for the displacement amplitude, X, of a one-degree-of-freedom oscillator
takes the following form (Tse et al. 1978a) when written in terms of the driving force, F,
and the darnping factor, ~, and the introduced variables.

;k = [(l-l/x’)’+ (2r/x)’]-1’2 (6)

An expression for the normalised velocity amplitude, V = 27rX~ is obtained by dividing
Equation (6) by x. The resulting expression for the normalised velocity is

+k = [(X- l/x)2 +4(’] ““2 (7)

In the case of exposure to a narrow band of noise characterised by a band center
frequency a corresponding narrow range of the cochlea about the place of stimulation of
the band center frequency will be driven strongly in resonant response. At very high sound
pressure levels in the narrow range of strong cochlear stimulation the response may be
expected to be passive and thus well damped. All segments within the narrow range of
strong stimulation will exhibit broad response and consequently the motion of any particular
segment within the narrow range of stimulation will differ very little from that of all other
segments within the same narrow range. Any difference in the contribution of any
particular segment within the narrow range compared with the contributions of all other
segments within the narrow range to the forcing term, I’8M(z,O must be small.
Consequently, it may be assumed that the basilar membrane forcing term, F,(z,~ + FBJz,~
(see Equation 1), is essentially constant within the narrow range of strong stimulation.

The power introduced into a linear oscillator or a distribution of linear oscillators may
be calculated as the integral of the product of the basilar membrane forcing term and the
velocity of the cochlear partition, which here is modelled as a series of oscillators of
gradually varying resonant frequency as described by Equation (7). Since the forcing term
is essentially constant in the narrow range of interest the power distribution is controlled
by the velocity response given by Equation (7). The normalised power distribution
parameter, P, is as follows.

(8)

Consideration of Equation (8) shows that if the undamped resonant frequency ~~ is held
constant and the frequency j“ is allowed to vary then Equations (6), (7) and (8) provide a
description of the frequency response of an individual oscillator (cochlear section).



Alternatively, the same equations provide a description of the amplitude response along the
cochlea of the displacement, velocity and power injection when the cochlear partition is
modelled as a series of oscillators each resonant at a slightly lower frequency as one
progresses from the basal end to the apical end.

Two investigations concerned with selective destruction of portions of the cochleas of
experimental animals, by subjecting them to intense sound and subsequently determining
the extent of damage to the cochleas and the associated hearing deficits, have been reported
by Liberman and Dodds (1984a,b). Here attention will be given to Figure 6 of the first and
Figure 8D of the second of the referenced papers. In each case the animals were subjected
to narrow band noise centered at 5.5 kHz for two hours at a level in the first case of 109
dB and in the second case of 110 dB re 20 pPa.

It will be assumed that the induced darnage is proportional to the work done and thus
to the acoustic power input to the damaged area of the cochlea. While information is
insufficient to calculate the actual power input, the predicted power input distribution may
readily be calculated using Equation (8) and may be compared with the observed
distribution of damage to the hair cells as reported by Liberman and Dodds. It will be
assumed that the upper and lower bounds, fU and j, of a region of destruction will be
determined by corresponding input power levels. For example, as may readily be shown
by use of Equation (8) the following relation is predicted.

fu/fN = fN/f, (9)

Referring to Figure 6 of Liberman and Dodds (1984a) an upper bound in terms of
frequency of 6.4 kHz and a lower bound of 4.8 kHz may be estimated leading to 1.15 and
1.16 for estimates of the left and right hand sides of Equation (9). In this case the
agreement is very good.

Referring to Figure 8D of Liberman and Dodds (1984b), where the extent of damage
is not as clear cut as in the previously cited figure, a lower bound of 4.0 kHz and an upper
bound of about 9.0 kHz is estimated leading to 1.6 and 1.4 respectively for the upper and
lower bounds. In view of the well known uncertainties associated with fatigue induced
failure (strongly suggested by the referenced figure) the left and right estimates of the upper
and lower bounds are in reasonable agreement with the prediction of Equation (9).

NONLINEARITY

Rhode (1980) investigated the possibility that the ear is nonlinear in a region of
resonant response and summarised his investigation in his Figure 6. In his figure measured
basilar membrane displacement over a range of frequencies at a point of observation is
plotted as a function of sound intensity introduced at the test animals ear canal. In the
figure coordinates are chosen so that linear response results in a straight line plot of 45
degrees positive slope. Rhode tells the reader that the observation point on the basilar
membrane is characterised by resonant response of about 7500 Hz. In the frequency range
well below and well above resonant response Rhode observed linear response but in the
frequency range of resonant response Rhode observed slopes very much less than 45
degrees showing that in this range response was nonlinear.

It will be useful to reanalyse Rhode’s data observing that when the displacement is
reduced by the intensity linearity will cause all data points which lie on a straight line of
positive forty five degree slope in Rhode’s plot to lie on a single point as shown here in



Figure 1. For example, the data points on the extreme left at 0.62 (4636 Hz) and on the
extreme right at 1.28 (9600 Hz) show linear response. In the figure the frequency ratio, 1/x
= f/f~, has been introduced for convenience even though this presentation suffers somewhat
because Rhode gives only an approximate value for the characteristic frequency ~~ = 7500
Hz) at his point of observation.

In Figure 1 it may be observed that the data point on the extreme right is very much
lower than all other data points. To understand this it is necessary to recall that resonant

response on the basilar membrane proceeds from high to low frequencies as one advances
apically along the membrane. For example, sound energy at the corresponding frequency

of 9600 Hz will have passed through the point where it would be resonant on the basilar
membrane well before reaching the point of observation which is resonant at the much
lower frequency of 7500 Hz. Consequently, sound at 9600 Hz will be subject to Lighthill’s
cut-off co-ndition which was described e~lier and thus will be considerably reduced.
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Figure 1. Analysis of Rhode’s data-

In the format of Figure 1 curves A to D correspond respectively to displacement
response measured by Rhode at sound pressure levels of 70, 80, 90 and 100 dB re 20 pPa.
In the figure Rhode’s data should be described by Equation (6) with the reservation that the
applied force at the tympanic membrane undergoes two transduction processes during
transmission which are not taken into account in the formulation of the equation. The first
transduction process is that of the middle ear which, however, may be assumed to have
imposed negligible variation in resulting force in the restricted frequency range of one
octave shown in the figure. The second transduction process occurs in transmission along
the basilar membrane as described earlier and has been given the name Lighthill’s cut-off
condition.

All sound energy at frequencies greater than about 7500 Hz, or as shown in Figure 1
at reciprocal frequency ratios greater than 1, will be subject to Lighthill’s cut-off condition



while all sound energy less than about 7500 Hz will be transmitted unaffected by the cut-off
condition. Consequently, Equation (6) should describe the data of Figure 1 for frequency
ratios less than 1/x = 1 subject to use of the appropriate damping factor. The latter equation
should also describe the data at values of the frequency ratio, 1/x = 1.28 and greater where
the response is again linear in the passive state.

It may readily be shown that the observed shift of about one half ocatve of the
frequency of maximum displacement with loud sounds reported by Johnstone et al. (1986)
leads to a value of the damping factor,f, in the passive state of 0.7. Using this value
Equation (6) may be used to calculate the continuation of the predicted passive response
(line E) passing through the point starting at I/x = 0.62. Comparison of the calculated
response at 1/x = 1.28 with the measured response shows that Lighthill’s cut-off condition
has resulted in a 23 dB reduction in transmitted sound energy. This corresponds to
transmission of 0.5’% of the incident energy at 9600 Hz. As Lighthill predicts that no
energy will be transmitted this result may be due to some unknown artefact of Rhode’s
experiment. On the other hand, a reduction of 23 dB suggests that the energy transfnitted
is quite negligible in agreement with the well known observation that sound energy
transmission along the basilar membrane appears to abruptly stop at a point of resonant
response.

It has been proposed that in the active state the cochlea may be considered to respond
as though the damping factor was constant but reduced from that which characterises
passive response. While it is probably quite reasonable to assume that response at 100 dB
re 20 ~Pa is passive and thus characterised by a damping factor of 0.7 as was done above
it is not clear that a sound pressure level of 70 dB re 20 pPa may be characterised as
strongly active. Nor is it clear what damping factors are to be assigned to curves A, B and
C in Figure 1. Never-the-less it is instructive to compare the measured data with a
prediction using Equation (6) and the damping factor estmated for the active state based on
the peak bandwidth response shown in Figure 4 of the reference cited earlier (Johnstone et
al. 1986). Substitution of the value 0.05 in Equation (6) has allowed calculation of curve
F shown in the figure.

Comparison of curve F with the data clearly shows the same general trend indicating
that the data is consistent with the model which has been proposed. For example, with
decreasing sound pressure level a decreasing damping factor is expected with associated
increasing response as shown in the figure. However, as mentioned earlier the plotted data
suffer from the uncertainty of the characteristic frequency at the point of observation which
is given by Rhode only as about 7500 Hz. If, for example, the characteristic frequency
where taken as 7142 Hz then the plotted data point shown at 1/x = 0.94 would shifl right
to l/x = 1.0 and the plotted data point at 0.79 would also shift right to 0.83 suggesting a
little better agreement with the data. As it may reasonably be expected that the damping
factor at a sound pressure level of 70 dB re 20 pPa is greater than that of the strongly
active state, for example at threshold levels, 0.05 is too small so that the prediction should
exceed the measured response as observed.

CONCLUSION

It has been shown that the cochlea may be modelled as a series of linear oscillators
with variable damping which are only lightly coupled and thus respond independently.
Strong hydrodynamic coupling exists between the oscillators of the cochlear partition which



accounts for traveling wave response but such coupling does not affect oscillator modal
response. For example, oscillator resonant frequencies are unaffected.

It has been shown that the velocity response of the passive cochlea is linear at sound
pressure levels, respectively, of 109 dB and 110 dB re 20 pPa. It has been shown that in
a viscously damped linear system the frequency of maximum velocity response is
independent of the damping. Thus in a system in which the damping varies with a time
scale long compared to the period of the frequency under consideration, as in the model
proposed here, the frequency of maximum velocity response of the active system must be
the same as in the case of the passive system. It may be concluded that where the active
system takes the form of unclamping, as in the model proposed by Marnmano and Nobili
(1993), the frequency of maximum velocity response is constant. Alternatively, as the
frequency of maximum displacement response is dependent upon the damping factor, as
may readily be shown (Tse et al. 1978a), the frequency of maximum displacement response
will be variable in a system in which the damping varies. The model provides quantitative
explanation for the observations presented in Figure 4 of the paper of Johnstone, Patuzzi
and Yates (1986) as well as explanation for the observations presented in Figure 6 of the
paper of Rhode (1980).
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