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A new numerical modelling method for sound wave scattering by elastic objects in an
acoustic waveguide is proposed. The method is applied to the case of sound propagation and
scattering in a plane 2-dimensional layer of liquid 80 metres deep containing a cylindrical air
filled shell of finite wall thickness and an outer shell radius of 8 metres. The incident wave is
considered to be the lowest order propagating mode of the waveguide. The reflection
coefficient is calculated in the frequency range between 5 and 300 Hz for several values of
wall thickness and distance between the shell and the waveguide bottom. Pictorial output
shows that the amount of acoustic energy reflected strongly depends upon all variables.
Maxima and minima in the reflection coefficient associated with cut-on frequencies of the
waveguide modes and structural resonances of the shell are identified. The calculations show
that the conventional definition of the target strength is inappropriate.

1. INTRODUCTION.

This paper addresses the problem of sound wave scattering by elastic objects in waveguide
systems. It contains a further extension of a method which combines the advantages of
integral equations and eigenfimction methods. This method allows reduction of the boundary
value problem to a system of integral-functional equations in terms of sources of scattered
waves on the surface of the object. Solutions of the diffraction problem previously obtained
by means of this method for the cases of sound scattering by one] and many2 homogeneous
parallel cylinders in a plane waveguide proved that the method allows calculation of the
scattering matrix for reflected and transmitted waves with high accuracy. This paper presents
a solution for the problem of sound wave diffraction by an air filled elastic shell in a plane
waveguide. Results of numerical experiment are shown for several values of the shell
thickness and its location in the waveguide.



2. STATEMENT OF THE PROBLEM.

Let us consider a planar waveguide filled with compressible perfect liquid of density, p, and
sound speed, c, which contains an air filled elastic shell with outer radius, R,, and inner

radius Rz. The elastic material of the shell is described by density, p,, and Lame coefficients,

A, p. The gas inside the shell is characterised by density, ~~, and sound speed, c~. A cross-
section of the waveguide is shown in Fig. 1.
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Fig. 1.

The incident wave P. is emitted by a source located at Y = - m. The amplitude and phase of
the incident wave are considered known and constant. The purpose is to calculate the
amplitude and phase of the reflected and transmitted waves, P- and P+.Harmonic temporal

dependence exp(-i~) will be assumed. In the analysis below all variables having dimension

of length are normalised on D/z.

The acoustic field in the waveguide will be described by a pressure field P(x, y) that can be
imagined as a sum of normal waveguide modes Pn(x,y):

P(x, y) = Pe(x,y) + ~ p~(~>Y) (1)
“=0

Elastic waves inside the wall of the shell can be described by the scalar potential F’(r, @ and

the z-component of the vector potential @(r, p), so that the displacement vector Ar in the
elastic material of the shell can be expressed as

Ar(r, @ = VF(r, p) + V x @(r, q?) (2)

where r and q are polar coordinates with the origin in the centre of the shell, and z is the axial
coordinate.

the acoustic field in the gas filled interior of the shell is described by the pressure field

P&’, (p).

The functions P(x, Y), F(r, P), @(r, P) and Pg (r, @ me the functions to be determined. They
must satisfy the following five conditions given by equations (3) to (7).

1. Helrnholtz equations
(A+ /c’)P(x, y) = O (3)

intheregion r> R,, O<x< z-co< y<m,
(A+ kg2)P~x, y) = O



in the region r < R2, O < p < 2TC,

(A+ k;)F@, y) = O (4)
(A+ k;)~(x, y) = O

in the region R2 < r < RI, O < p s 2n, where A is the Laplace operator, k = cdc, kg = kc/cg
k, = kdcl, k, = kc/et. Velocities of longitudinal and transversal waves c1and c, in the elastic

material are expressed as c1= [(A + 2#p]1’2, c, = (@@l’2.

2. Boundary conditions on the waveguide walls

[%+ A&’x=o=o (5)

ax
3. Conditions on the external shell boundary joining the acoustic pressure in the liquid P(x, y)
with the elastic waves in the shell. They correspond to:
. the absence of a tangential component of the stress tensor (the liquid is perfect),

(6.1)

● the continuity of the normal component of the stress tensor,

‘rrlr=R, ‘%[;][;[;;)‘:k:F++=R,‘-PI,=% (6-2)

. the continuity of the normal component of the displacement vector,

(6.3)

4. Conditions on the internal boundary between the shell and the gas have the same physical
meaning and can be written as follows:

(7.1)

(7.2)

(7.3)

5. Absence of the sources of the scattered field at infinite distance from the shell.

3. METHOD OF SOLUTION.

The method is discussed in detail in articles by Belov at al.1’2.A solution of the boundary
value problem is found in terms of a known field, Pe(x,y). The unknown finctions P(x, y),

F(r) h @(r, @ and Pg (r, P) can be represented as follows:
A) Pressure field in the liquid P(x,y) is a sum of the incident field, Pe(x,y) and the field
scattered by the shell, P~(x,y):

P(x, y) = g,(x, y) + qx, y) . (8)



The incident field may be modelled as a series of complete eigenfimctions of the boundary
value problem determined by equations (3), (5):

R(x, y) = ~ A. exp(ig~y)” sin(q “x –e.) = ~aJ~(kr)exp(im(p) (9)
n=lJ m. -co

where g. = (k; – q ~)1’2, gn and q,, are correspondingly longitudinal and transversal

wavenumbers. The spectrum of eigenvalues q. is determined by the dispersion equation,

(lo)

[)Qn = tin-l L
go ‘ go=;’L=;

The scattered field P~(x,y) can be found as a potential of a simple layer:

~,(x, y) = ~ G(x, JWO>yO)p O(xo~ yo)d~o (11)

In equation (11) p“ (x., y. ) is an unknown function describing the field source distribution

on the surface of the shell, (XOJO)are the coordinates of the current integration point over the
line L which is a circle of radius RI centred at the point x = ~o, y = Yo,do= dxodyo, and (x,y)
are the coordinates of an observation point.

The Green’s function G(x,y;xo,yo) is the field radiated by a point source in the waveguide and
has the following form:

G(X, y; Xo,yo)=~G.(x>Y; xo>Yo) (12)
n=o

{

OCp(ign(y – Y. )), Y ~ Y.
G,, = _.-!_ sin(q.X – 6.)sin(q~xII – 6“) exp(ign(yo – y))> Y < Yo

l’.gn

h -goyn=n+
(go - i)(L - n:)

The pressure field P~(x,y), given by equation (11), satisfies the Helmholtz equation (3), the
radiation conditions at y + ~m and the boundary conditions (5).

The finiteness of the field P, (XJ) ensures that the function p“(xo,yo), describing the
distribution of sources can be represented as a Fourier series,

l~o
PO(w) = y bp exP(@9); bp = ---~ jJ (q)exp(ipp)dq (13)

p=d

B) The potentials F(r,q) and @(r,p) in the shell will be found as a series of eigenfbnctions of
a cylinder,

F(r, q)) = ~(A~J,,(k[r) + A~Ym(k,r))exp(imq?) (14.1)
m.-co

@(r, q) = ~(B#Jm(k,r) + B~Y.(k,r))exp(irnq) (14.2)
m.-m

J. and Y. are Bessel fi.mctions of the first and second kind.
C) The representation of the field P~xJ) in the gas filled interior of the shell has the
following form,



PIg(r, q)= ~CmJm(kg~)q3(h29) (15)
m...n

It is possible to reduce the problem to a system of linear equations with respect to Fourier
coefficients 6P by substituting formulae (10), (1 1), (13) (14) and (15) into boundary
conditions (6) and (7) on the outer and inner surfaces of the shell:

p=.m

where –m < m < m, and

(16)

(17)

K(q, q. ) = [G(x> Y; X02Yo )],.R,;
[

Uq, qo)= &x>Y;xo>Yo)
1 r= R,

x=~o+Z?lsinq; y= Yo+l/lcosq

Ppn,= -[u;, (M,)+ zp.Jp(kR, )]qm

The impedance zm on the outer shell boundary describes the relationships between pressure
and its radial derivative on the boundary for every cylindrical mode and can be expressed as,

4%IJ.(VV +4@zW,%)+BiMJm (k/ R,)+ B;W,Y. (k&)
z,,, =

[i~iOfm(k,R,)+i~~$rm(k,R,)+B#+im(k,R,)+~i$~m(k,R,)]
(18)

P

where the complex amplitudes A;, A,:, l?;, B: describe elastic waves inside the shell

(formulae (14)) and are defined by the following system of linear equations:

Auxiliary functions $ .(x) are defined by the formulae,

$f~(x) = 2m(x~., (x)- Jnj(x)); $1.(x) = 2m(xrm (x) - yin(X))

$~~(x) = x2(J&)+ 2J:~ (x)); 0;.,(4 = x2(w)+ 2Y; (x))

+;.(x) = 2X2(J;; (x) -+ J.(x)) ; $:.(x) = 2X2(%’ (x) -;y.(x))

Solution of the system(16) permits one to calculate the acoustic field P~(x,y) scattered by the
elastic shell in the waveguide by formula (11) and, consequently, other parameters of the
scattered field like reflection coefficient, modal structure of the scattered field etc. The matrix
itl of the system (16) is generally infinite. However, it is found that over an extensive range
of input parameter values the absolute value of the matrix elements, Mpm, approaches O as
the distance from the centre of the matrix increases. For example, in the case of scattering by
a homogeneous cylinder considered in the article of Belov at al.2 the maximum matrix index
mmm equals 5 when the non-dimensional wavenumber K = 2D/k is in the interval 0.5< K <
12.5. In the case considered here mmm is 13 in the wavenumber range 0.5< K <32. The
matrix elements MPm are negligible when Ire{,~1>mmax.



4. NUMERICAL EXPERIMENT.

The solution of the problem of sound wave scattering by an elastic shell in an acoustic
waveguide is found for a waveguide with pressure release upper boundary and perfectly rigid

bottom, e.g. for a , = ~1 = O, a, = ~, #O. The expression for the incident field takes the
following form:

where longitudinal

R(x. y) = ~ A. cos[(n + 0.5)x] exp(ig~y)
ndl

wavenumbers gn = [( 1k2 – n + 0.5)2 1’2.

(20)

The following parameter values were used in calculations:
. Waveguide depth D = 80 m;
. Parameters of the incident wave: AO = 1, An = O, n > O;
. Parameters of the liquid: p = 1000 kg/m3, c = 1493 m/s;
. Parameters of the shell: R, = 8 m, p, = 7700 m/s, L = 1.11 x 10’OPa, p = 8 x 1010Pa;
. parameters of the gas: cg = 330 m/s, ~g = 1.29 kg/m3;

. The frequency range: from 5 Hz to 300 Hz, corresponding to a non-dimensional
wavenumber, K, range from 0.5 to 32 in steps AK= 0.1.

The reflection coefficient Rc can be defined as RC= Sc / S,, where Se is the total amount of

acoustic energy in the incident wave moving through the vertical cross-section of the
waveguide in unit time, and Sr is the amount of energy reflected in the backward direction
from the shell. For the waveguide being considered Rc can be expressed as

~lA~12 Reg.
RC = “.0 (21)

IA012Rego

where A. is the coefficient in the first term of the series (20), and A[ are coefficients in a

similar series for the reflected wave P-(x,y). It is necessary to note that only lower order
modes of order n < k - 0.5 contribute to the energy flow in the waveguide. Higher order
modes exponentially damp with increasing distance from the source and do not transmit
acoustic energy.

Calculated dependencies of the reflection coefficient on the frequency of the incident wave
for different values of the shell thickness d = R, - R2 are depicted in Fig. 2. In the case of d =
15 cm the dependencies are shown for 3 values of the height H above the bottom to the centre
of the cylinder. Points on the graphs marked by symbols correspond to the resonance
frequencies of the waveguide kn = n + 0.5.

Analysis of the pictures shows the following:

I. Substantial changing of the reflected signal near the resonance frequencies kn can be
explained by a sharp increase of the density of acoustic energy because of multiple reflections
at the waveguide walls. The pictures show that the resonance frequencies of the waveguide
can be associated with both maxima and minima of the reflection coefficient, depending on
the frequency, J This fact can be explained by differences in phase between the shell
oscillations and the acoustic wave scattered by the shell, which is reflected from the
waveguide boundaries and returned back to the shell. The changes of phase are occuring at
frequencies that are associated with resonances of the internal shell oscillations.



rig. ~,

H. Two separate frequency ranges with different behaviour of the reflection coefficient can be
identified at d = O, 4.8 and 15 cm. In the cases of zero thickness (d= O) and thin shell (d= 4.8
cm) in the frequency range below approximately 100 Hz the changes of Kr are very sharp. At
these frequencies the shell diameter is less than half wavelength and reflection can be caused
only by monopole oscillations of the shell. Near critical frequencies~n = knc/2n the acoustic
pressure amplitude is high, which leads to effective excitation of the radial oscillations of the
shell and, in turn, to the change of reflected signal. In the range above 100 Hz geometrical
reflection plays a significant role and variations of the reflected signal are not so sharp.

When the shell is thick (d = 15 cm), reflection below 100 Hz is very small, because the
stiffness of the elastic material of the wall is sufficient to prevent excitation of monopole
oscillations of the gas in the shell. Geometrical reflection at ~ > 100 Hz is substantial in this
case as well.

111.At zero wall thickness the reflection is extremely high at the very beginning of the
frequency range near the resonance frequency of the waveguide mode of order n = O. At such
frequencies the wave vector of the incident wave is nearly vertical and interaction between
the shell and the incident wave at a very sharp angle leads to almost total reflection. When the



shell thickness is not zero total reflection does not exist because of energy transmission
through the elastic shell.

IV. TWOminima in the reflection coefficient indicated by A and B in the first picture (d = O) at

~=150 and 230 Hz are very interesting features associated with the complex resonance
oscillations of the shell itself. The first of them (f= 150 Hz) exists at O < d <15 cm while the
other one nearly disappears at d = 4.8 cm. Obviously, resonance excitation of higher order
modes in the gas filled interior of the shell plays a significant role in these phenomena.

V. The third picture (d = 15 cm) shows that the reflection coefficient in the waveguide
strongly depends on the vertical location of the reflecting object. For the current waveguide
parameters the shell reflects more energy when it is located close to the bottom which can be
explained by the spatial configuration of the incident wave that has maximum pressure
amplitude at the bottom and zero pressure amplitude at the upper boundary. The proximity of
the rigid bottom also causes more substantial variation of the reflection coefficient due to a
more efficient interaction between the shell and the boundary.

VI.When the shell is quite thick (d = 40 cm) multimode oscillations in the elastic material
lead to a complex frequency dependence of the reflection coefficient.

5. TARGET STRENGTH AND ITS APPLICATION TO WAVEGUIDE SYSTEMS.

One of the parameters that is most often used in measuring efficiency of reflection of a plane
acoustic wave by elastic objects in the ocean is the target strength TS, that may be defined as

Ts=lolog+
1,

where lr is the intensity of the reflected wave referenced to 1 m distance from the acoustic
centre of the target, and Ii is the incident wave intensity.3

However, as the above analysis shows, the use of TS is not appropriate for a shallow ocean
when the acoustic field is clearly dependent upon the modal structure. First, the reflection
depends not only on the geometrical shape of the object, but also on the location of the object
in the waveguide and the resonance properties of the object. Second, the rate of amplitude
decrease with increasing distance from the target, differs for different waveguide modes.
Third, in the immediate proximity of the object the higher exponentially damping waveguide
modes with imaginary gn give significant contributions to the total acoustic field. And fourth,
the reflection will depend on the location of the source, because the modal composition of the
incident wave described by the Green’s function (12) depends on the source coordinates.

For all these reasons the target strength does not characterise fully the reflective properties of
the object inside the waveguide. In this case the object can be described by the scattering
matrix containing coefficients of transformation of the modes in the incident wave to the
modes in the reflected wave. The reflection coefficient similar to the one calculated above can
also be used to describe overall reflection in the waveguide.

6. SUMMARY.

The solution of the problem of sound wave scattering by an elastic gas filled shell in a plane
waveguide reveals the advantages of the method used which allows the calculation of all



characteristics of the acoustic field in the waveguide with very high accuracy. The amplitude
and phase of the acoustic waves can be found throughout the waveguide: in the liquid, the
elastic shell, and the gas filled interior of the shell. Calculated dependencies of the reflection
coefficient on the frequency of the incident wave are strongly affected by resonance
properties of the waveguide and internal structural resonances of the shell. Dependence of the
reflection coefficient on the vertical location of the shell also is important. It is shown that the
use of the conventional definition of the target strength is not appropriate in waveguide
systems.
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