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This paper examines a simple model, namely the vibration of an inilnite string resting on sets
of periodic supports, which are modeled as linear spring-mass-damper systems. The q-th set
of periodic supports is offset from a reference origin by a distance Xq. These offsets can thus
be used to create spatially-distributed gratings along the length of the string. The objective
here is to develop a means to model the vibration response of more complicated stiffened
elastic structures.

INTRODUCTION

The objective of this study is to gain an understanding of the physical mechanisms that
govern the vibrational and acoustic response of complicated stiffened elastic structures, such
as fluid-loaded beams, plates, and cylindrical shells. The physics that control the vibrational
and acoustic response of periodically stiffened structures (uniform stiffeners with equal spac-
ing) are well understood. For arbitrarily stiffened structures, only qualitative characteristics of
the vibrational and acoustic response are currently known. Presented here is a formulation
which may eventually allow for quantitative mathematical models.

I. IMPLICIT FORMULATION OF WAVENUMBER SPECTRA

Elementary discussions of wave phenomena often begin with modeling transverse
waves on a string. In this paper, the classical problem is reformulated to include sets of
periodic supports, modeled as spring-mass-damper systems, which exert an applied force on
the string proportional to the string’s displacement.



A. Development of the multi-supported string model

A flexible string of infinite extent is assumed to have no resistance to bending or to
shear, and to be of uniform density, p. For small string displacements, W(X,~, the tension, T,
within the string is assumed constant. Figure 1 provides an illustration of the multi-supported
string.
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FIG. 1. Static equilibrium of an infinite string resting on multiple sets of periodic supports.
Here there are two support sets, Q =2, with the q = 1 set of supports having no offset, xl = O

The displacements of the supports, which are modeled as single degree of freedom
spring-mass systems, cause restoring forces to be exerted upon the string. Each set of
supports, therefore, can be modeled as a set of applied forces acting on the string. The forced
response of the supported string can be written as

T i72w(x, l’) i32w(x, t) + f(x, t)=fo(x, ~)
ax2 - p i%2

(1)

where f ~(x, t) denotes a steady-state excitation force applied to the string at x = XO,namely

fo(x,t) = j%(x - xo)e-’d, while f (x, t), represents the sum of all support forces. The fkee

response is obtained by setting the amplitude of the excitation force to zero, ~ = O.

A single@ of periodic supports, Q = 1, produces a combination of inertial, damping,
and spring forces equal to an applied force, F1 ~(~, at the n-th support. For Q sets of periodic
supports (each set having different support properties and offsets), the total force applied to
the string is

f(v)= -$mq, n(t) =-fix{nzq “y(t) +,,
1

‘u&) + I@q,n(t) 3(X – (~1 + %)) (2)
q=l n q=l n

where Uq,n(t) is the q,n-th support displacement and nz~,rq, K~ denote, respectively, the mass,

damping, and spring coefficients of support set q. Each set of supports may possess a different



offset, x~, provided lxJ <1, where 1 is the fundamental periodicity of every support set in x.

The single index n under the summation symbol implies an infinite sum over all n.

The transverse displacement of the string is assumed to have a harmonic time
dependence, given as e-l@t. Therefore, upon substitution of Eq. (2) into Eq. (l), with
W(X, t) = w(x)e-’o’, there follows

~ d2w(x) Q
+ po2w(x) + ~,~,(mqo2 + irqo – Kq)uq,~ 8(X - (FI1+ Xq) = f.(x). (3)&2

q=l n

The solution W(X) is assumed bounded and to have a Fourier transform pair defined as

W(k) = jw(x)e-’hdx Zz ~W’(k)e’hdkw(x) = ~
-m -m (4a, 4b)

The transform of Eq. (3) into the wavenumber domain, k, yields

~Q~
a(k,co)FV(k)-F~ ~ {~(nzqo2 + irqm – Kg )uq,nt5(x–(d +xq)}e-ihdx = Fe(k) (5)

q=l_m n

where a(k, o) = k2 – k; and k. = o/c. ,with CO= ~, the free wavenumber of the
~e-ilao

unsupported string. Fe(k) = – ~ is the transform of the applied excitation, normalized

by the uniform string tension. Sin~e the displacements of the supports and string are assumed

to be continuous at positions, x = nl + x~, it then follows that Uq,n= w (nl + Xq). By the use of

Poisson’s Summation theorem in the form

(6)

and substitution of w (nl + Xq) into Eq. (5), an implicit expression for the string’s response in
the wavenumber domain is obtained. Similar manipulations are presented in detail in Macel
and Cray.2 There follows

a(k, co)W(k) + ~ 13q(co)vq(k) = Fe(k)
q=l (7)

where we have defined

‘9Bq(co)=fi(m~ -co2-2iomq<q) (8)

@q(k) = ~W(k + nkl)ei””q (9)
n



With o ~ = ~-” , the natural ffequency, and <q = rq /(2~q@ q), the viscous damping

factor, of the q-th support set. The Bloch3 wavenumber, k, =2 z f 1, corresponding to the
system’s fi.mdamental periodicity, is frequency independent. For notational convenience, the
phase associated with the Bloch wavenumber and the q-th offset is denoted, aq = k,xq.

II. EXPLICIT SOLUTION FOR THE WAVENUMBER SPECTRA

The summation defined by Eq. (9) has the usefil periodicity property [4]

JVq(k + klrn) = FVq(k)e-i~’q. (lo)

This property will shortly prove essential in solving Eq. (7)explicitly for W(k). The zeros of
the continuous fiction a(k,o) for real k are at *k. and are simple. Thus, a(tko ,m) = O, and
we are led to define

{/
1

Y(k) = a(k, m) for k #&k.

o for k = *k. “
(11)

Then, Eq. (7) yields

W(k) = Y(k)Fo(k)- Y(k)~Bq(@)Vq(k) +a@(k - ko)+a#Xk+ k.) (12)
q=l

for all k, where the Dirac delta functions must be included to allow for possible solutions at
the unsupported string’s free wavenumber. However, for non-zero Bq(@, it maybe ShOVJII
that the areas associated with the impulses at + k. must be equal to zero, al = az = O, for
bounded solutions of w(x). Then, it follows from-(12) that

Q
W(k + kfm) = Y(k + klm)l?o(k+ klm)- Y(k+ klm)~Bq(o)JVq(k)e-imaq (13)

q=l

for all m, where the periodicity property, Eq. (10), has been used. Therefore, multiplying Eq,
(13) through bye ‘mapand summing on m yields

~p(k) = ~ W(k + k,m)e’”ap = ~p(k) - ‘$ B,(@&(k)yM(k) (14)
m q=l

for 1s ps Q, where we defined



~q(k) = ~ Y(k + klrz)F(k + klrz)einaq forl SqSQ,
n

I&(k) = ~ Y(k + k~n)ein(ap-aq) forl<p,q SQ.
n

Then, re-arranging Eq. (14),

S[b?+qwpq(m]qm=qw
q=l

for 1 s p < Q, where 5Pq denotes the Konecker delta. Define the qu~tities

qq(H = ~pq + ~q(o’pqw forl<p,q SQ,

and complex QxQ matrix

[1
Q

c(k) = Cpq(k) .
1

Then, in matrix form, Eq. (16) can be rewritten as

C(k)li(k)=i(k)

(15)

(16)

(17)

(18)

(19)

where the Qx 1 column vectors are defined as

The wavevector spectra of the supported string is solved explicitly with substitution of

the solution of ~(k) from Eq. (19) (l?(k)= C-l(k)~(k) ) into Eq. (12).

The properties of C-l(k) will be discussed in a subsequent paper, for reference,
however the following is provided.

For Q =2, the C(k) matrix becomes

rl+BIY,IWBY,2Q0I_r1+IYV,O)BJWZ,-~2)1
C(k)=l q~,,(k) 1+ B2y22(k)j-lqs(k,a2 - @ 1+ %s(~>o) I

(21)

where S(k, A) is defined as the sum of the series

S(k, A) - ~ Y(k + kln)einA. (22)
n

Recalling that a(k, co)= k2 – k: and Eqs. (11) and (15), the fiction S(k,O) is



S(k,o) = ; (k + ~,;),_~:= 1sin(kol)

2k0 {cos(kl) - cos(kOl)} (23)
9

where the sum of a series provided in Hansens has been used. This fimction S(k, O)has period
kl in k.

More generally, from Eq. (22) and Hansen ~age 222, (14.3.3)],

[

1 exp(iL(k+ kO)/ k,) exp(iL(k - kO)/ k,)
S(k,A) = ~

~ sin(l(k+ kO)/ 2) – sin(l(k–kO) /2) ) (24)
9

where L = n(2M+ 1) - A, M = int(A/2n); here, int(t) means the integer strictly less than t. When
A = O, then M = -1, L = -n, Eq. (24) reduces to Eq. (23).

The determinant of C(k) is

det C(k)= 1+ (Bl + BJS(k,O)+ B1Bz[S2(k,0)- S(k,ctl –ct2)S’(k,ct2 –al)]. (25)

Wavenumbers that allow the det C(kj ) = O maybe examined using weighted impulses
or Dirac delta fimctions evaluated at k = kj. However, for the forced response given by Eq.
(19), damping may also be introduced into the parameter {B.}, thus shifiing the real and
simple roots, k,, from the real k axis.

Returning to the matrix C(k), for Q = 3,

[

1+ Blrll(k) B&(k) B&’13(k)

C(k) = B1121(k) 1+ B2X22(k) B3Z23(k)

B1~31(k) B2z32(k) 1+ B&3(k) (26)

Suppressing the k dependence temporarily, the determinant is

det C(k)= (1 + B1j’l, )(1 + B2Z22)(1 + B3K33)

+ B~B#s(~lzz&l + &&~zl) – ‘2B3(1 + ‘1~11)~23~32

– ~~~3(1 + ~2~22)~13~31 – ‘1B2(1 + ‘3~33)~12~21 (27)

This determinant is also periodic with period kz in k.
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