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The phenomenon of trapped modes (standing waves) near the underwater

constructions has been studied. The influence of construction dynamic on the

process of trapped modes formation has been studied. It has been also shown
that existence and a number of resonance frequencies essentially depend on

elastic construction and channel parameters. The influence of liquid nonho-
mogenity on the initiation of trapped modes has been investigated separately.

1 Introduction

A fundamental problem in the theory of surface waves is the determination of the charac-
teristic standing modes and frequencies of a system oscillating under gravity [1], [2], [3].

If the free surface extends to infinity, the modes of vibration will be expected to form a
continuous spectrum, with an infinite amount of energy in each mode. Ursell F. showed

that the theory of surface waves leads to a phenomenon essentially new in a classical

mechanics, i.e., to a discrete as well as to a continuous spectrum. A part from continuous
spectrum, that corresponds to traveling waves, the real discrete spectrum corresponds to

standing waves, call in [1] trapped modes.

The peculiarities of mixed spectrum formation in elastic systems with inclusions have

been investigate [4], [5].

This paper are devoted to the possibility of the mixed spectrum existence in the

problem on the standing wave localized in the area of dynamical inclusion (thin plate,
membrane) on the bottom of a channel. The first problem is plate oscillation on the

bottom of trench in the channel with liquid. The second problem is plate oscillation on



bottom of trench in the channel with liquid. The second problem is plate oscillation on

the top of the projection in the channel. The third problem is membrane oscillation on
the bottom of channel. As a result we find the influence of the parameters of the channel,

and the bottom relief for existence inclusions trapped modes.

Z Statement of the problem

Consider an elastic construction on the bottom of a three-dimensional channel filled with
an ideal noncompressible liquid. Cartesian axes are chosen so that y is directed vertically

upwards and z and z in the plane of the unperturbed bottom. The motion of the liquid
is described by velocity potential O(Z, y, z, t) in the linear theory. The velocity potential

is found from the following boundary problem:

Qcz + @YY+ Q.. = O, in the domain occupied by liquid, (1)

~~~+ g@Y = O, on the free surface, (2)

(?0

-{

zut on the moving part of boundary

h = O on the rigid part
(3)

where g is the gravity acceleration, w is the small construction displacement determined

by the equation

Lw + ~wtt = p, p = p(~t +9W) (4)

on the moving part of the bottom. We suppose that bottom topography is given stepped
configuration. The submerged elastic constriction

the membrane. Then

can be modeled by the thin plane or

+ kw,
(5)

where Al is elastic construction mass per unit length, D is cylindrical rigidity, 2’ is mem-
brane tension force, k is elastic foundation rigidity.

Then solutions to (1)-(4), corresponding of frequency w and

along the elastic construction can be sought in the form:

w(z, z,t) = Re {wo(z)ei(~z–w~)},

@(z, y,z, i) = Re {~(z,;y)ei(~”-w~ )}.

Substituting (6) into (l)-(4), that the function p(x, y) defined

wavenumber m traveling

(6)

on a two-dimensional do-

main W which is a cross-section of fluid orthogonal to the z-axis, satisfies the following

boundary value problem:

[[

p%. + pyy = mzy in WI

yv=~onF

—iwwo, on S~
$?Y=

O, on S’r

(7)

(Lo – fkfLd2)W0 = p.



Here F and S = S~ U S, denote parts of the boundary dW, lying in the free surface, in

the moving surface and in the solid surface respectively.

The problem (7)-(8) is a spectral problem, in a sense that one of the parameters of

the mechanical system involved should be treated as spectral parameter, which is to be

found with the corresponding non-trivial solution.
For Y(Z, g ) we requh the “localization PI’OP@’”

/wlvd2dx@+ /)p2dx < m. (9)

In this case the energy of the wave mode is finite per unit length of the z-axis, and the
mode (or wave) is said to be trapped.

Remark. Without the elastic construction and for the constant liquid depth the prob-

lem (7)-(8) leads only to continuous spectrum starting with w~ = /grn tanh n-all which is
the cut-off frequency, H is the depth of the liquid in the channel.

3 Liquid oscillation in a channel with uneven bot-

tom. Case of the rectangular trench with an elas-

tic bottom.

Let us decompose W as (see Fig. 1)

w = w(+) IJ ~(-)

and p = ~(+) in W(+) p = p(–) in W(-). These potentials must satisfy the following

relations:

(km – Mti2)w0 = –ipw
/
ap(~, y)dr + 2apg, y = O. (12)
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Figure 1:



Where km = Dr-n4 + k is generalized rigidity of the plate, p is the liquid density, to. is

the unknown constant. The problem (10)-(12) is a spectral problem and the parameters

w, m, D, C, M are spectral parameters. The Green function allows us to express the
solution of problem (10.1)-(11) in the form [5]

J+)(qy) =Ia (-)
_aPy (v>~)G(x – q,y, u)dq. (13)

The corresponding Green function G(z, y, w) is

G(z, y,w) =
{

Ao(w)e-~Olzl -t- ~~=1 A~(u)e-~’l’l, w < wb
(14)

iAo(u)ei~Olzl+ ~~=1 Ah(LJ)e–c~lzl, # >Wb,

where

2(0cosh y(o
AO=– L A~=–

2& COS Yf$k

<O(sinh 2Hf0 + 213f0)’ [k(sir] 213[k + 2H&);

(o is the positive root of the below equation

{k is the positive root of the below equation

g[ tan H( = –u=, <k=~&+m2, k=l,2, . . . .

Thus, the problem for ~(-) includes

If zoo = O (the bottom of the trench is solid) for the spectrum parameter m we can

have the following formulation

Below the cut-off frequency (U < Ub) the Green function (14) is negatively determined

function. In this case, we have not real discrete spectrum. O < w < @

For w. # O, we can show that the problem (15) can have only one discrete frequency
lying bellow @ if the following inequality is true

km > 2apg



Consider the case of the long waves ma >>1, mH <<1. The approximation of the

Green function gives

2mz4k
G(z, H,u) = --- —6(x)

I) [k

Where 6(x) is Dirac delta-function. By the solution of the (15), the spectral parameter

Al is given by

Ld2 Bm – tanh mH

M = 2P’(08 –wz)m(l - BmtanhmH)

wheref)~=~, B=A+&[&H-~]
Wb—b)

Let w be an cut-off frequency (U = Wh), then the liquid occupying domain W(+) is at

rest. In this case, Green function has the form

and we must consider

We have free oscillation of liquid only in the trench W(-). The necessary condition for
parameters of the plate are so

km – 2apg
d: = km > 2apg.

M + p(mtanh mh)-luj’

4 Liquid oscillation in a channel with uneven bot-

tom. Case of the rectangular projection with an

elastic top.

For this case, we can write the following problem

/
(km – MLJ2)W0 = –ipw a qdx + 2apg. (18)
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Figure 2:

The spectral problem (16) -(18) is equivalent the system of integral equations

aa
(2– Mu= = –flu= 11G(+) (x, q, w)dqdx +

aa L:L:~(T)GF)(XV)U)dVdX (20)

Where

G!) = G(+)(.T+q,u) + G(+)(x – q,u).

If W. = O and ma >> 1, rnll <<1 we can give the simple equation for w

Introduce the following notations ti~l = gm tan H and ti~l = g. tan (H + h). AS a result
the equation has only one root w such that

wb~ < W < Wb=.

The statment confirms the result obtained in [3].
If WO # O we obtain the following results. The problem (16) - (18) has the real

frequency lying in the region O < w < wb~ and can have two and more real frequency in

the region wbl < w < ~bz.

5 A membrane on the even bottom

In this case, the spectral problem(1)-(4) maybe wright by the following integro-differential

equation for we(z):

d2w.

/

1
~+ Awo=–p Wo(T/)G(z — q,w)dq,

–1
(21)

w,(z) = o, x = +1.
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Figure 3:

Where ~ = ~(~w’ - k-mT+pg), p = ~

the Green function may be simplified as follows

For long waves (ma >>1, mH << 1),

:h-(x).

Differentiation of equation (21) with respect to x gives

As the result of the decision of this problem we get the following frequency equation

a~o tanh a~o + S2 tan S2 a<. tanh a<. – S1 tanh S1 S;+s; ‘

(a~o)2 + S; – (a(~)’ – S; = 2A0 cosh a(ti “
(22)

Where A, B1, B2, S1, S2 are the functions of the mechanical system parameters and fre-
quency. It is satisfies the condition

Tm2+k–pg>o,

the number of the roots (22) is finite, which is equal to the existence trapped wave discrete
spectrum bellow the cut-off frequency.
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