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ABSTRACT
Levels of structural vibration reduced by damping treatment can be evaluated by consumption of vibration energy

derived from distributions of structural intensity and strain energy. However, it is dijj$cult to estimate accur~ely structural
intensity and strain energy in the structure with damping treatment. In this paper, therejore, we propose a method to
estimate more accurately structural intensity and strain energy using the mode shapes which are approximated by
superposition of the natural mode shapes of the structure without damping tre~ment. First, structural intensity and strain
energy of the equivalent system of a beam with damping trea%mentand a damper are calculated by this method, and its
accuracy is examined. i%en, the effect of damping treatment are discussed based on the distributions of the structural
intensity and the strain energy. Finally, validity of this method is examined.

1. INTRODUCTION
To get maximum reduction of levels of structural vibration and noise, damping treatment

should be applied to a structure with consideration of the mode shapes of it. Since the reduction
of the levels of structural vibration and noise depend on the mode shapes of the structure. It is
necessary to design optimal layout of damping material for reducing vibration and noise of the
structure. Furthermore, if the effect of damping treatment on the structure can be evaluated,
further reduction of the levels of vibration and noise can be achieved by improving the layout of
damping materials. The reduction of the levels of vibration and noise can be evaluated by the
consumption of vibration energy derived from the distribution of structural intensity. And, if
loss factors of the structure and the darnping material are known, consumption of vibration
energy can be estimated using the strain energy and loss factor. However, it is difllcult to
estimate accurately structural intensity and strain energy of structures with damping treatment
as will be shown in sections 3.2 and 3.3. In this paper, therefore, we propose a method for
estimating more accurately the structural intensity and the strain energy.

In this method, distributions of structural intensity and strain energy are estimated using
the approximated mode shapes which are derived by the superposition of the natural mode
shapes of the structure without damping treatment. First, structural intensity and strain energy
of the equivalent system of a beam with damping treatment and a damper are calculated by this



method, and its accuracy is examined. Then, effect of damping treatment are discussed based on
the distributions of the structural intensity and the strain energy. Finally, validity of this method
is examined.
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Fig. 2 A beam with darnping treatment
and an equivalent system.

2. THEORY
2.1 The Equivalent System and the Equation of Motion
For the purpose of basic examine of the method proposed in this paper to estimate the
distributions of structural intensity and strain energy of the structure with darnping treatment,
we use a cantilever beam with damping treatment and a darnper as shown in Fig.1. Where $(t) is
unit point force, c is viscous damping factor of the darnper, 1is length of the beam, xc is position
of the darnper connected to the beam, Xfis position of the exciting point. The beam with
damping treatment can replace an equivalent homogeneous beam as shown Fig.2. Where b is
width, h is thickness, p is density, q is loss factor and E is Young’s modulus, and suffix b
indicates the beam, suffix d the damping material and suffii e the equivalent system. Flexural
rigidity (EZ),,mass per unit length (pA)eand loss factor q. of the equivalent system are given by
following equationsl:

l+ez(4hz +6h~+4h~)+elh~E ~
(EI)e=

1+ ezhz
b b,

(PA), = (l+%h,)%% ,

(1)

(2)
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e2=—, hz=~, qb<<q~.
Eb

(4)
b

For complex modulus darnping of the equivalent system, the Euler-Bernoulli equation of
motion becomes following three equationsl:

~= 6(x - XC)f+c$(x- xf )fej@,(PA),~+ (Ez).(1+~%)ax,

~=.cfz,
(5)

(6)

w. (~)=W(t,xc) , (7)



with the boundary conditions

Wf$) = () ,W(t,o)=
d’w(t,l) = a’w(t,l) = o

(2x &= rw ‘
(8)

where w is displacement of the beam, WCis displacement of the beam at the point connected
with the damper, & is internal force between the beam and the damper, and 6(x) is Dirac delta
function.

2.2 Approximate Function for Vibration Mode Shape
Measured mode shape W(x,fl of the structure with damping treatment is approximated by
superposition of several natural mode shapes of it without damping treatment, as following
equation:

W(.x,f)s ~ai (f)@,(x), (9)
i=1

where W(.x,j) is complex mode shape at the frequency ~, the function @i(x) is the ith normal

function, and ai(~) is weight coefficient. The weight coefficient ai(~) is given by the following

equation:

(lo)a~(~)= ~~w(x>j)$i (x)& .

The approximated mode shapes obtained from Eqs.(9) and (10) are continual functions. The
rotation, moment and shear force, therefore, can be obtained as continual functions. Similarly,
structural intensity and strain energy can be obtained as continual functions. If the mode shape
W(x,f) is given as discrete measured values, Eq.( 10) should be integrated numerically. The
optimal number of modes to superpose depends on the interval of measured points.

3. NUMERICAL STUDY
The Structural intensity and the strain energy of the beam and the damping sheet will be

calculated to examine the validity of this method. The properties of the beam and the damping
sheet are given as shown in Table 1, and viscous damping factor of the damper c is 1.0 Ns/m,
position of the darnper xc is O.lm and position of the exciting point Xfis 0.3 m. The natural
circular frequencies of the beam without darnping treatment are shown in Table 2.

Table 1 The properties of the beam and the damping sheet.
Length 1 Height h Density p Young’ modulus Loss factor

[mm] [mm] [kg/m3] E [GPa] ~
Beam 400 3 7800 206 0
Damping sheet 400 3 1500 0.6 1

Table 2 The natural circular frequencies of the beam without damping treatment.
Mode No. 1 2 3 4 5 6

ak [radLs] 130.1 815.2 2283 4473 7394 11050
Mode No. 7 8 9 10 11 12

0 [rad/s] 15430 20540 26380 32950 40250 48290
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3.1 Structural Intensity
Figures 3(a), 3(b),3(c), and 3(d) show displacement, rotation, moment, and shear force of the
beam with q.=o and CO=2300rad/s, respectively, where the solid line stands for the real part and
the broken line for imaginary part. Figures 4(a), 4(b), and 4(c) show the total power obtained
from the estimated structural intensity, force contribution, and moment contribution,
respectively. It is evident from Fig. 4(a) that the entire vibration energy supplied by exciting
force to the beam without damping treatment is consumed in the damper. Similarly, Figs.5
(a),5(b), and 5(c) show the power of the beam with damping treatment, where q,=O.035 and
0=2200 radls. It can be seen from Fig.5 that reduction of the vibration energy corresponds with
the mode shapes of the beam.

3.2 Simulation of Measuring Structural Intensity
To discuss the accuracy of the structural intensity, complex
calculated with intervals of u!x=l/40=10 mm. Figures 6(a) and

mode shapes of the beam are
6(b) show the power obtained

from the structural intensity estimated using the data of complex mode shapes of the beam
without darnping treatment, where T@ and co=2300 rad/s. In the Fig.6(a), the broken line
stands for the power estimated by 4-transducer array method2’3and the solid line for the
theoretical curve. In the Fig.6(b), the dots stand for the power estimated by the method
proposed in this paper, the broken line for the power estimated by 2-transducer array method2’3
and the solid line for the theoretical curve. From Figs. 6(a) and 6(b), the following results
became clear for the beam without damping treatment. The result estimated by 4-transducer
array method corresponds almost with theoretical that. The error in the estimated by 2-
transducer array method is large in the near-fields. The error in the estimation by the proposed
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method is large in the same near-fields of the exciting point and the connecting point to the
darnper. However, the error of estimation by the proposed method is less than that by 2-
transducer array method.

Similarly, Figs. 7(a) and 7(b) show the estimations of structural intensity for the beam
with damping treatment, where @l.035 and 0=2200 rad/s. From Figs. 7(a) and 7(b), the
following results became clear for the beam with damping treatment. The error in the estimation

Fig. 8 The structural intensity for number of
mode shapes superposed .

increasing of the number of superposed modes.

by 4-transducer array method is large. The
error in the estimation by 2-transducer array
method has increased. The accuracy of
estimation by the proposed method is good,
whether with or without damping treatment. It
can be said from above results that the
proposed method is valid for measurement of
the structural intensity of the beam with
damping treatment.

Figure 8 shows the estimations of the
power when the number of superposed modes
was changed, where q.=0.035 and 0=2200
rad/s. Fig.8 indicates that the results are
approximating to the theoretical curve with
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Figures 9(a) and 9(b) show moment contribution and force contribution, where the dots stand
for the contribution estimated by the proposed method and the solid line for theoretical curve. It
can be said from Figs. 9(a) and 9(b) that the proposed method can estimate moment and force
contributions of the structural intensity.

3.3 Influence of Error on the Estimation of Structural Intensity
In order to test the iniluence of error on the estimation of structural intensity, we use the data of
complex mode shapes including errors whose standard deviation o are 1% and 5% of the
maximum amplitude of the mode shapes. Figure 10 shows a sample of the displacement
including error with 0=5%, where the solid line stands for the real part and the broken line for
the imaginary part. Figure 11 shows the estimation of the power when the number of
superposed modes was changed, where O=190, qe=0.035 and m=2200 rad/s. As shown in
Fig. 11, the estimations of the structural intensity are scattered by superposition up to the ftith
mode. It can be considered from Fig.11 that optimal number of mode is rz=5. Figure 12(a)
shows the structural intensity estimated from the data including errors with 0=1 ‘%0, n=5,

Tk.=o.035 md @=2200 rad/s, where the dots stand for the proposed method, the broken line for
2-transducer array method and the solid line for the theoretical curve. Figure 12(b) shows
similarly the estimation with CJ=570 and rz=5. It is seen from Figs. 12(a) and 12(b) that The error
of the estimation by 2-transducer array method increases, and the error by the proposed method
is small, except near-field of exciting point. As a result, It can be said that the proposed method
is possible to estimate the structural intensity for the measurement data including errors, except
near-field of exciting point.
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3.4 Estimation of the Effect of Damping Treatment
Figures 13(a) and 13(b) show estimation of the consumption of the vibration power per unit
length with d% and 5%, respectively, where the solid line stands for the theoretical curve
and the dots for the estimations, which are obtained by differentiating the estimation of
structural intensity by the proposed method. It can be considered from Figs. 13(a) and 13(b)
that the consumption of the vibration energy can be derive by the structural intensity estimated
by the proposed method for the measurement data including errors.

If loss factors of the structure and the darnping material are known, consumption of the
vibration energy can be estimated using the strain energy and loss factor4. Figures 14(a) and
14(b) show the consumption of the vibration power estimated by the strain energy and the loss
factor, where the solid line strands for the theoretical curve and the dots for the estimation. It is
obtained from Figs. 14(a) and 14(b) that the consumption of the vibration power can be derive
accurately by the strain energy estimated by the proposed method.
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Fig.14 The consumption of the vibration energy estimated by the strain energy and the loss
factor.

4. CONCLUSION
The results of the present study are summarized as follows:

(1) By the method proposed in this paper, it is possible to estimate accurately the level of
structural intensity propagating in the beam with damping treatment.

(2) This method is valid for the measurement data including errors.
(3) The consumption of vibration energy can be estimated using the structural intensity

estimated by the proposed method.
(4) The consumption of vibration energy can be estimated using the strain energy estimated by

the proposed method.
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