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S~: h investigation aimed at determining the complex moduli for a number of polymeric materials
is discussed. The complex moduli are determined over a particular fkquency range on the basis of
transmissibility measured on mass loaded cubic specimens subjected to controlled base harmonic excitation.
The mathematical models of the response of the specimens are reviewed and a finite element based correction
ktor is introduced to allow the use of one dimensional theory to three dimensional test samples. Relationships
between the measured transmissibility and the calculated moduli presented. Consideration is given to the
mrmner in which the experimental data maybe fitted and to the errors that are involved.

1. Background
The fi.mctionof an isolator is to reduce the magnitude of motion transmitted from a vibrating
foundation to an item of equipment, or to reduce the magnitude of the force transmitted tlom
the equipment to its foundation[l,2]. Polymeric isolators are commonly used in such systems in
order to minimize vibration levels and to reduce the effect of transmitted vibrations]. In this
type of isolator, both the load-supporting fimctions and the energy-dissipating functions are -
performed by the same element. Such polymers are often modeled as hereditary-elastic
materials i.e. materials whose constitutive relationship can be expressed in the form (for one
dimension deformation)M%61

do
O+A1— +...+AN :j - ‘+...+BN~—= Boe+B1

dt dt
(1)

or in the equivalent form

u(t)= E[e(t) - J’tr(t - ~)e(~)dr] (2)
o

where I’(t -r) = T an exp[-cz, (t - T)] is known as the relaxation kernel for the material and
n-1

an, a, and N must be determined experimentally. If the response of the specimen is harmonic
such that g(t) = &ei~t, then a(t)= JZ”(iti)g eiti, where E*(iti) = El(o)+ iE2 (u) is called the
complex Young’s modulus, and can be expressed in the form

tE*(iw)= E(I - an )“=1u. + i~
(3)



Relations (1), (2) and (3) are equivalent representations that may or may not represent
adequately the constitutive characteristics of the material under consideration in the frequency
range of interest. More accurate representations maybe found[T],but the form assumed in this
paper has the advantage of leading to closed form solutions for the free vibration response of
such materiak[8,9].
In the more general case involving three dimensional deformation of an isotropic hereditary-
elastic material the specification of two complex elastic constants is required. The results
presented will be confined to those pertaining to Young’s modulus.

2. Determination of Complex Modulus
To determine the complex Young’s modulus of such polymeric isolators, longitudinal vibrating
viscoelastic rod theory is often applied[10-14].The equation governing the axial displacement
of a thin rod subjected to harmonic excitation of frequency a is the one dimensional wave
equation and the transmissibility for such a rod with a mass M at the other end is given by[3]
T~(iti) = [cos(n’1) - q (n’l)sin(n*l)]--l (4)

where n’ = O(;)$ =;> c*‘complex velocity of wave propagation; p = mass density, 1 =

rod length and q = M / ( pAL ) is the ratio of M to the mass of the rod.
The above equation describes the behaviour of a system in which the only important variable is
the deformation in the direction of the axis of the rod. If the lateral dimensions of the rod are
significant the above equation will be in error.
According to this theory the transfer function is given by Eq.(4). Its magnitude is usually called
the transmissibility ftmction. If its discrete values are measured, the values of complex Young’s
modulus can be obtained through an iterative calculation of the following equation

(5)

where /3 = n’1. For I@I<<1, Eq.(4) and (5) can be simplified as

~m(~~j) = (1- 17D2)-’ and ~ 2 = ~ ‘1(1- T~l(iWj)) (6)

It should be noted that the transfer function is always 1 when u is zero, independent of the
value of the complex modulus, so it is not possible to get good estimates of the complex
modulus in the frequency range near zero.
The above theory may be applied to tests conducted on long thin rods and such testing could “
be expected to result in accurate values for the complex Young’s modulus.
If the specimens being tested do not satis@ the assumption of one dimensional deformation, a
correction factor y, has been proposed to account for such cases[3,15].,that is, E* in Eq. (4) is
replaced by I?*Y,, where y, = 1+ ~ S2, S is the so-called shape factor and # is a constant.

An approximate rod theory given by Love can also be employed to describe the vibration of
internally damped rods that have significant lateral dimensions. A dynamic correction factor is
derived as[3,16]y ~ = 1- ( ~v r)’ L-2, where v is Poisson’s ratio and r is the radius of gyration
of an elementary section of the rod about the x axis,
It turns out that, by using finite element theory, one dimensional theory can also be usefully
employed for specimens of uniform cross section whose geometry is clearly not one
dimensional. As an example consider the test sample shown in Fig.1 which consists of a cubic
test specimen supporting a rigid mass subjected to harmonic base excitation. Assuming that
Poisson’s ratio is constant and known, the following equation, which describes the deformation
of the specimen and the supported mass in the vertical direction can be developed (See Fig.2)
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where the subscripts or superscripts t, b, v and c denotes thetopmass, the base mass, the
viscoelastic material domain and the connection boundary respectively, and the vectors Xt , x~,
x~9 Xb and Xkare vectors representing the displacements of the top mass, bottom mass,
isolator, connection points between top mass and isolator, and connection points between
bottom mass and isolator respectively. It is assumed that each finite element node has three
translational degrees of freedom. Bold notation is used to represent a matrix or a vector.
If the stiffness of the top and bottom masses is sufficiently high, compared with the viscoelastic
material domain, they may be treated as rigid masses, and there exists the following
transformation:

xte =[et! . . e]ru,
where ~=[1 o o] , j=t or b and u,, Ubare the top and the base axial displacement

respectively. After the transformation, its form in the Laplace domain with zero initial
conditions becomes

{

MO Mh O

(S M,t M,, M,ti

O Mb, M~~ ‘[it:;4E*(S))-I$I=(8)

where Ut, XV, U~, Ft and Fb are the Laplace transformation of z+, xv, Ub, ft and fb
respectively. When only base motion excitation is considered, the corresponding elastic
eigenvalue problem of this equation yields a diagonal eigenvalue matrix Q, in which the jth
diagonal element is LO~, and an eigenvector matrix @. Using the orthogonality relationships,

we can solve Eq.(8) to obtain:

{}

u,
=-@(s21 + f2E*(S))-18DT

{

o

xv 1
Ub

s2MVb+ KVbE*(s)

The displacement transfer function is therefore:
(9) “

(lo)

where IVj is the order of Eq.(8). The characteristic equation of the FEM formulation and

simple rod theory can be written respectively as

t?fem(s)=rlN(s2 + C@”(s))
n-1

gm~(s) = fi(s2 + P: ~y;’;))
n=l

where /3n are the eigenvalues of the rod. Comparing these expressions, a dynamic correction
factor can be defined as follows:

A -1
y* =ti:(p: —)

Ap L=
(11)

If the mass ratio is large, a transformation, so called static condensation[lT], can be introduced
to reduce the finite element equations to a single degree of freedom system:
xv=- Km-l(K@u, + ‘#b)



resulting in the following equation

[

A4, +~Mv

*M
v

:fiMJ;}+[:l ;]cE(t,*{;}={;} (12)

where Cl?(t) is the equivalent axial stiffness and M~, M~~ and M, are the top mass, base mass

and mass of viscoelastic domain respectively. This equation is similar to that obtained for a
massless rod connecting two masses at its top and base. If the viscoelastic body is treated as a
massless rod, a static correction factor y can be defined as: y = CL/A. Generally, y is a
function of the geometry of the isolator and Poisson’s ratio v, which can be readily calculated
using the finite element method. All that is required is to construct a finite element elastic
model of the isolator, assume E = 1, and apply a unit force distributed on its top with its base
fixed. Assuming that the isolator has appropriate symmetry one can then write C = U;l.

3. Experimental Procedure
A diagrammatic representation of the experimental set up is shown in Fig. 1. The sample under
test is approximately cubic and two steel plates are glued to each end of the sample. The lower
one is attached to an electrodynamics shaker and the upper one, which has mass M, is bee to
vibrate. Sinusoidal excitation is provided and the transfer function is measured by means of
accelerometers mounted on each plate. A FFT analyzer is used to calculate the transfer
function or transmissibility function.

4. The Form of Complex Modulus and Fitting Method
Different representations of the complex modulus E*(iu ) have been proposed[4,5,6]. The
form Eq.(3) corresponding to Eq.(2) will be used. The coefficients an and an are determined
by the viscoelasticity of the material. To get these coefficients, one way is to use the the Least
Squares Curve Fitting method. For convenience, Eq.(3) can be changed to the form of rational
fi-actionpolynomials corresponding to Eq.(1)

E*(@=(i B”(i@”)/ (1+ x An(h)”) (13)
n-o n-1

When values of the complex moduli are obtained at discrete points, there exist errors for every
flequency point ~ j. The square summation of the errors at each flequency point can be

weighted by an independent factor w, and the summation can be taken as the objective

fimction of a least squares minimization method
2

Z = ~Wj(iwj)ll E’(itoj)(l+ t An(iti,)n)- X ~n(i~j)nll
j-l n-1 m-o

(14)

The weight functions W,(i@) = w,/ (1+ f“-1~ (i@)n) may be set as constants by selecting

initial values of An. The iteration method can be used to get a set of more accurate values.
When N is large, the coefficient matrix of the sovling equation will be poorly conditioned. To
improve the fitting precision, a weighted complex orthogonal expansion method is suggested
to fit the fimction. Two sets of weighted complex orthogonal fimctions are selected to describe
the complex modulus as follows

tE*(iti) = (n~ocnpn(iti))/ ( d“qm(i~)) (15)
n-O

The weighted square summation of the errors is

t

2

Z = f Wj(iwj)ll E*(iwj)( Jnqm(itij))- ( t cnPn(i@j))ll
j--N, n-o n-o



where Wj(itij ) are the weight fimctions: W’,(i@) = ~j / t dnqn(iti) and E*(i@.j) = E*(-i@j).
n-O

If Pn(iw ) and qm(i@) are orthogonal fimctions, they must satisfy the following relationships

in which ~~(iwj ) is the conjugate function of fm(itoj ) and

{

1 if fn(ia) = pn(ia)
0; = ]lE*(itij)//’ if fn(if.d) =qn(ia)

An iteration method is needed to solve this problem and can be expected to provide a set of
more accurate values. In the first step W,(ito, ) may be taken as 1 or all d, can be set as 1 as

initial values.

5. Error Estimation
When using the transfer fimction to calculate the complex Young’s modulus, the main error
source will be from the error in measuring the transfer fimction. It is necessary to know the
sensitivityy of the calculated modulus to these measurement errors. From Eq.(4) there exists a
small variation 8P caused by a small dTm(iti), where

t5Tm(ico)= [cos(~ + 5/3) - q(/3 + i5~)sin(~ + @ )]-1- Tm(iw)

Also it maybe shown that
&Z*(i@)/ E*(ioJ) = -(2B +6B)6D /(9 +60)2 (16)

and a~ can be solved from the following equation

For a SDOF system, when the transfer fimction has a variation 3Tm(ito), then from Eq.(6) the
sensitivityy of E* to the measured transmissibility Tmis given by
&!i*(iti)/ E*(iti) = -dTm(i@)/ Tm(iti)/ (dTm(i@)+ Tm(i@) - 1) (17)

6. Transmissibility Dependence on the Mass Ratio
To compare the damping character of different viscoelastic materials used as isolators, they
must have the same resonant frequency. One way to achieve this is to change the top mass.
The relation between resonant frequency o, and top mass M can be derived by

differentiating the transmissibility fimction. If a, is the resonant frequency, then
dllTm(@$

0(.0
6)=(+=0

From Eq. (4)
IT~(i@)12= [(COS/31ch0, - q~l sin 13@P2 + q~, cos Blsh@,)’

+ (sin P1chfi2 + T?D1cos fi1sh13z+ q132sin B1ch~2)2]-1

Substituting Eq.(19) in to Eq.(18), gives

v
-a2+Jz=zG.

2a ~

in which
al = A1zA~2+ A2zA~2 a2 = A11A;2+ AIZA{l+ A21& + A jl’

22 21

All = COSBlchp ‘ A12 = -~1 sin~lch/3z + /3, cos/31sh@2

(18)

(19)

(20)

a3 = A1lA[l +A21AJ



A21 = sin fllsh/32 A22 = /31 cos/31sh/32+62 sin /31ch132

6,=(
Ay(#+E;);@L(E1+~; ‘2- ‘( Ay(~;+E:))+uL(-E1 +W)+

The relation between the top mass and the resonant ffequency for SDOF case is

y A m, E1(@,)(E1(@,)E;(@,) + ~z(q)~~(q)) - (~2(@,) + @o,))(o@@J + 2E1(q ))
M=—”

q?L (E~(@r)~(ar) + ‘z(wr)Ej(ar))W - 2(~2(ar) + ‘j(@r))

7. Results and Conclusions
The materials under test are Isodamp EAR C-1002, Chloroprene and Deproteinized Natural
Rubber, whose acronyms are EAR, CR and NBR respectively. Firstly, the influence of mass
ratio q on the eigenvalues /3 are considered. Table 1 lists the mass ratios of the samples that

were tested. Fig.3 presents the first four eigenvalues for different mass ratios q. It is obvious

that when r? becomes very large, the lowest of eigenvalue will tend to zero, and meanwhile the

other eigenvalues will be the same as those of a rod tlxed at its top and bottom. A large ratio of
the second eigenvalue to the first one implies the influence of the second or higher modes on
the tkquency range of the first mode will be very small and means the single degree of
freedom idealization is appropriate in this range. Fig.4-6 compare the modal displacements of
the specimen calculated using rod and finite element theory. The influence of Poisson’s ratio on
the transverse displacements, which gives rise to the correction factor, can clearly be seen.
Fig.7 and 8 show how the correction fhctors vary with mass ratio for different modes and
different values of Poisson’s ratio. All the finite element analytical results are calculated by
MSC/NASTRAN. The error estimation in Fig.9 shows that the least error during identification
of complex Young’s modulus by means of Eq.(5) occurs near the resonant fkquency. The
error estimation from the SDOF system is similar to that from the rod theory at ikquency
range sufficiently below the second resonant frequency of the rod. All the second resonant
frequencies of the tested samples are larger than 1500 Hz, thus the single degree of freedom
idealization can be used in the I%quency range considered.
As mentioned above, the formulation of complex Young’s modulus in terms of Equation (3)
can be determined by measuring the transfer fimction; calculating the corresponding discrete
complex Young’s modulus; and using the weighted complex orthogonal expansion method to
curve fit the data. The materials tested were CR, EAR and NBR, and typical transfer functions
are showed in Fig.10. The fitting results are obtained as follows

CR:
32721 2524.6

E“(h) = L9808 “ lo7(l- )j~+ 29693- j@+51322

E“(iu) = 95905 x 107(1-
38.047 5524.4

EAR: )i~ +353.82- i~ + 649L()

NBR: E*(i@) = 2.7102 x 107(1- iu~’go - i@~’&7)
. .

in which Poisson’s ratios were taken as 0.499, 0.32 and 0.499 respectively. A typical
comparison between the measured data and fitting curves of EAR is shown in Fig. 11. As may
be noted, the fit at low frequencies where the moduli are changing most rapidly is worst. When
the expression for the complex Young’s modulus has approximately been fitted, it is easy to
calculate and compare their transmissibilityy. Fig. 12 compares the maximum transmissibilities
for CR, EAR and NBR, and shows that there is close comparison between the calculations and
the measured results. EAR always has better transmissibility characteristic than the others.
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Table 1 Mass of Materials
q ( Mass 1) q (Mass2) q (Mass 3) q (Mass4) p (Kg/m3) pAL (Kg)

CR 3.71 21.75 58.14 102.77 1.39X 103 0.0333

EAR 3.87 22.71 60.69 106.39 1.34X 103 0.0319

NBR 5.04 29.56 79.02 139.69 1.12X 103 0.0245
.
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