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This paper deals with a hybrid finite element modeling of wave scattering problems in

infinite domains. Scattering of waves involving complex geometries in conjunction with

intlnite domains is modeled by introducing a mathematical boundary. On the mathematical

boundary, the finite element representation is matched with analytical solution in the infinite

domain in terms of fields and their derivatives. Drilling degrees of fkedom at each nodes of

the finite element model are introduced to take into account the transverse component of the

elastodynamic field more precisely. To verifj the roles of drilling degrees fi-eedom and the

slope constraint, normal incidence of P and SV waves are considered. For the P-wave

incidence, the use of slope constraint suppresses artificial reflection at the mathematical

boundary and for the SV-wave case, the use of drilling degrees freedom reduces numerical

error at irregular frequencies.

1. INTRODUCTION

Numerical modeling of wave propagation and scattering in inikite domain has been of

interest in many fields. There are several numerical approaches which have been used to treat

wave problems in infinite domain involving complex geometries: boundary element

method(13EM) [1,2], use of infinite element [3], matching technique with finite element method

[4] and T-matrix method [5]. BEM approach has been widely used in radiation and scattering

of waves. The introduction of an absorbing boundary condition (ABC) has been used to



minimize the non-physical reflections from the mathematical boundary [6,7]. Recently, Givoli

and Keller [8] and Harari and Hughes [9] derived exact non-local type non-reflecting boundary

conditions, so called to Dirichlet-to-Neumann (DtN) boundary condition. However, when

the DtN operator is truncated for implementation uniqueness is lost at characteristic

frequencies.

The finite element method has been widely used in investigating wave propagation and

scattering problems because it can be used for inhomogeneous and anisotropic materials with

geometric diiliculties. Since the finite element technique is an approximation technique, it has

some limitations. The dispersion and spurious oscillation phenomena in finite element

solutions have been investigated. However, the effects of displacement-based conventional

finite elements are rarely investigated. There are basically three kinds of fields; irrotational

acoustic fields, solenoidal electromagnetic fields and elastodynamic fields. For acoustic fields,

the use of conventional finite elements based upon nodal displacements is sufficient. For

solenoidal fields, it has been found that node-based classical finite elements have drawbacks

[10]. Representations of solenoidal fields as piece-wise linear, continuous, fimctions of space

are not adequate. Such representations are too rigid across interfaces and result in loss of

accuracy in computations.

Thus, recently, Kim et al. [11] proposed the use of drilling degrees of freedom (d.o.f.) in

addition to nodal displacements in the finite element approximation to take into account the

solenoidal component of the elastic field more precisely. For fbrther transparency at the

mathematical boundary, the continuity of all derivatives are introduced via a penalty method.

It is found that by using slope constraint on the mathematical boundary and introducing drilling

d.o.f at the finite element nodes, the error due to artificial reflection can be reduced

remarkably. However, the roles of the drilling d.o.f. and the slope constraint are not clearly

proven because oblique incidence of P-wave is considered.

Therefore, this paper aims at proving the effects of slope constraint and drilling d.o.f in

the finite element modeling of wave scattering problems associated with infinite domain.

Instead of oblique incidence, normal incidence is considered because normal incidence does not

occur mode conversion in elastic media if the boundary is flat.

2. FINITE ELEMENT FORMULATION

The finite element formulation in this paper is not much different from the

conventional formulation for elastodynamic problems except drilling degrees of fleedom and

slope constraints. Details of the whole derivation is in the reference[l 1] and a brief summary

will be shown.

2.1. Drilling &w ees of fieedom

Rotational degrees of fi-eedomat corner nodes of finite elements are considered to



alleviate the stiff behavior of linear finite element in bending motion. Figure 1 shows a linear

element with drilling d.o.f in the two-dimensional case.
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Figure 1. Linear element with drilling d.o.f

the displacement can be represented as follows by using proper

where N1 – Nd are conventional interpolation iimctions for linear element and Ng – Nlz are

the iiuwtions that incorporate displacement and drilling d.o.f A detailed procedure to derive

these relationships is given in the reference[l 1].

case,

The drilling d.o.f. are simply the rotation about a given axis. In the two-dimensional

the axis of rotation is the y-axis. The physical rotation in a continuum Q, is defined as

‘,=+(-:+:)”B’’” (2)

Since the rotation of drilling d.o.f. should be the physical rotatiom a penalty factor y is used

to efiorce the equality of (3 and Q, where 8 is the rotation of drilling d.o.f.

2.2. Continu -itv of derivatives of the fielh at the mathematical bounahv

To eliminate the irregular fi-equencies, one can impose continuity of displacement fields

and their derivatives on the mathematical boundary. This turns out the mathematical

boundary to be non-reflecting. The slope constraints that has to be imposed on the

mathematical boundary r, is:
a.
—=u~
a

on r (3)

where x = ~, z]. The right side of above equatio~ iir is a given value at the boundary

which is a derivative of the plane-wave solution, u, and the left side represents the derivatives



of the displacements in the finite element model. By using the penalty method, the slope

constraint is implemented in the finite element equation.

For the total finite element equations, if we assume that this is the steady state case, the

equations turn out to be

{–dM+K+*a +CZKr}ti=i+@r (4)

where M, K are mass and stifiess matrices of the elastic mediuw and

Kr = jr B~Bn=, (5)

Fr = j’rii;Bndr , (6)

Km=j[B@ -N,~[B. -N,lW (7)

and o is the excitation fkequency.

2.3. Analytical solution of vlane-wave vroble?r?

To obtain an analytical representation for the fields in the infinite domain, the problem of

plane-wave scattering in the half space in the absence of any structure is considered.

Accordingly, we consider a serni-infhite elastic domain with P- and SV-wave incidence,

respectively.
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Figure 2. Semi-infinite elastic domain problem

Displacements in the solid region can be written as
u = pi~. exp(~ki” r) + PLAL =p(j~~ -r) + PA exp(j% or) (8)

where p is polarization vector, k is the wave vector, A is amplitude of wave, 00is the angle of

incidence, and the time factor, exp(@t) is contained in all fields, but omitted for convenience.

Subscript i is for incidence, L is longitudinal and T is transverse waves respectively. Snell’s

law puts Eq.(8) in much simpler forms. The boundary conditions at the top surface are

at z=O, r= = O, r==o (9)

Thus, two unknown amplitudes, AL, ~ can be found from the boundary conditions. Once

the unknowns are found, after substituting these unknowns into (8), we can obtain the

displacement at the mathematical boundaxy of the finite element model.

3. NUMERICAL EXAMPLES

An elastic half space problem is considered to prove the efficiency of enforcing slope

constraints and endowing the finite elements with drilling d.o.f. to realiie a transparent



mathematical boundary. P and SV-wave incidence are considered and a finite element model

is chosen such that the finite region will be solved with proper boundary conditions.

Parameters used in the analysis are same as in the reference [11]. A four node linear element

with drilling d.o.f. was used and 341 nodes are made. Constraint parameters for the slope

constraint and drilling d.of. are searched by an optimization technique at each frequency.

Air
:..

Elastic solid ! ‘
x

:..- .:

........ .... .. ........ .. ....

+-.

MathematicalBoundary
Normalincidence

z

Figure 3. Elastic half space problem.

To judge the finite element analysis results, the average error has been defined in the

previous study as

~ “ U-,i – ‘Wq,i

Error;?
1– uThsqv,i

for oblique incidence of P-wave. However, in normal

(lo)

incidence case, for example, P-wave

normal incidence, the theoretical value of x displacement is zero. When SV-wave is normally

impinging, in contrast, the theoretical y displacement is zero. This turns out the error defined in

(10) to be infinite. Thus, the error criterion is slightly changed as follows,

1“ ‘FIWf,t– ‘Thuwy,i + ‘FiWf,i
ErrOI=z~ for P-normal incidence

A,
(11)

1–

+Wmi
Erro#$ ‘-’i - ‘Tb:’i 1 ‘ 1 for SV-normal incidence (12)

1- 1

[1where U=m,i = w, u -, is the displacement found from the finite element analysis and

uTkwy,i [1=W,u - i is the plane-wave solution at node I. Here, n is the number of nodes.

3.1. P-normal inciaknce

To distinguish the effects of drilling d.o.f. and slope constraints, P and SV-normal

incidence are considered separately. P-wave generates particle movement in propagation

direction. Normal P-wave incidence is some what simple case in the elastic half space

problem because there is only one mode, P-wave.

When the displacements are specified at the mathematical boundary in the absence of

slope constraint and drilling d.o.f, the error peaks are observed (’original’ case in Figure 4).

These peaks coincide with the natural ilequencies of the rectangular slab associated with the



mathematical domain. When the slope constraints are enforced at the mathematical boundary,

these irregular frequencies are suppressed completely (’slope cnstr’ case in Figure 4). This

reduction is comparable with the oblique incidence case[ 11]. In the oblique incidence case,

the peaks in the error curves were shified down considerably but the errors are still high and

irregular frequencies are still present. This result shows that the slope

reduce the artificial reflections at the irregular fkquencies of the model.

a is searched optimally and its range is 1010-1014.

constraint helps to
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Figure 4. P-normal incidence case.

Next, the slope constraint and drilling d.o.f. are used simultaneously to eliminate artificial

reflection. It is found that the error is reduced remarkably and at the same time, the peaks are

completely eliminated (’both’ case in Figure 4). This shows that slope constraint tends to

eliminate irregular frequency while drilling d.o.f reduce the error bound.

With the four-node linear finite element, drilling d.o.f. are used at each node without

slope constraint. The rotational parameter, y is in the range of 1015-1018.

the error as well as the number of peaks are reduced (’drilling dof case in

error reduction is due to the fact that the use of drilling d.o.f. avoids the

nodal-displacement-based finite elements.

3.2. SV-norms! incidence

It is found that

Figure 4). The

stiff behavior of

In SV-wave, the particle moves vertically with respect to the traveling direction. In

contrast with normal incidence of P-wave, SV-wave travels similar to bending wave. In other

words, while normal P-wave produces compression or tension in finite element, SV-wave



incidence does bending motion. Thus, to take into account SV-wave, finite element needs to

be flexible, which means the role of drilling d.o.f are more important than P-wave incidence.
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Figure 5. SV-normal incidence case.

In Fi~e 5, the ‘original’ means the error when displacement is specified at the

mathematical boundary in the absence of slope constraint and drilling d.o.f Several peaks

are observed in the error curve. When slope constraint is imposed on the mathematical

boundary, the first peak in the error curve is reduced, but other peaks are still remained (’slope

constr’ case in Figure 5). However, by using drilling d.o.f at each node without slope

constraint, the peaks are nearly eliminated and the level of error is shified down (’drilling dof

case in Figure 5). When the slope constraint and drilling d.o.f. are used at the same time, no

improvement than the use of drilling d.of. is observed. Thus, from these results, we can

conclude that the use of drilling d.o.f in modeling of SV-wave propagation is much important

than modeling of P-wave propagation case. This fact proves that the use of drilling d.o.f. in

addition to nodal displacements in the finite element is right to take into account the solenoidal

component of the elastic field more precisely.

4. CONCLUSIONS

To model semi-inhite domain problems, the region is subdivided by introducing a

mathematical boundary and the finite element method is used in the bounded region. To

alleviate artificial reflection at the mathematical boundary, slope constraint are used on the

mathematical boundary and drilling d.o.f are introduced at the finite element nodes. For



normal incidence of P-wave, the use of slope constraint completely suppresses the peaks in the

error curve. For normal incidence of SV-wave, the introduction of drilling d.o.f reduces

error peaks remarkably. This proves that the use of slope constraint is important in

longitudinal wave propagation and the use of drilling d.o.f. takes into account transverse wave

propagation more precisely.
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