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ABSTRACT

On the theoretical analysis basis the
non-uniform plate vibration associated with

principal trends and regularities in
the effects of bending and torque

dynamic rigidity of stiffeners are studied. The relations between the parameters of
plates and stiffeners at which a significant attenuation of acoustic radiation at low
frequencies can be realized.

INTRODUCTION

Vibration of thin plates with stiffeners are of great interest for solution of a
number of tasks associated, in particular, with acoustic fatigue of thin-walled
elements of aircraft structures and their sound energy radiation into the cabin. The
investigations of elasto-inertial features of stiffeners from the standpoint of their
effect on thin-walled structures in application to the task of their acoustic
radiation attenuation have become recently very urgent. This is determined by the
necessity of essential reduction of low-frequency sound pressure levels inside
cabins of airplanes with propeller power plants which is not provided with
traditional soundinsulating structures. Varying the dynamic rigidity of stiffeners
one can regulate the aircraft fhselage acoustic radiation achieving its significant
attenuation. For example, varying the stiffener rigidity and their step, the space
between the knot lines of the lowest forms of panel eigen-vibration can be
reduced and thereby their acoustic radiation at low frequencies will be sharply



attenuated. However, it is necessary for this aim to know at least the main trends
and regularities associated with the elasto-inertial stiffener feature effect on thin-
walled structures vibration. The above said trends and regularities, us one can
judge fi-om publications, are not yet studied, properly and are the subject of the
present investigation.

STATEMENT OF THE TASK AND SOLUTION METHOD

Similarly to [1, 2], we consider a thin freely-supported plate stiffened by a
system of rigidity ribs in one direction which separate it into N spans of equal
extension (/). Assume that the contact between stiffeners and the plate is realized

along the straight lines, the cross forces arising on the contact line cause only a
bending deformation of the stiffeners and the bending moments cause only a
torque deformation. Refer the orthogonal system of coordinates i = {xl, x2} to

the middle plate surface, bringing the coordinate origin into coincidence with one
of its contour peaks. Coordinate Xz in this case will be counted in the direction

orthogonal to the contact lines. The plate length in xl- direction is indicated as /1

and in Xp- direction as /2 = M.

The plate vibration equation is written down for normal displacements of
Wn in the span with number n relative to the dimensionless coordinate

y=x2//-(1):):

(1)

/( )Here D = Eh3 121 – V2 is the cylindrical rigidity, E is the elasticity module, v

is Poisson coefficient, h is the thickness and p is the density of plate material.

Eq. (1) is supplemented by boundary conditions on the plate contour:
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and by equations expressing the connection between flexures, turning angles,
forces and moments on the contact line between two neighboring spans:
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Here EqJ is the bending rigidity, GJ~ is the torque rigidity, Jp is the polar

moment of inertia, F is the cross-section area of the stiffener, p, is the density of

the stiffener.
For boundary conditions (2) the solution of Eq. (1) can be found as

follows:
wn = Wn(y) sinklxl exp(id);

k, %@,, m=l, 2, ... .

After substituting Eq.(7) into Eq.(1) we get a common differential
solution of which is the following:

~n(Y) = ~l.sin~2/Y + a2n Cos k2/y + a3nshk/y + a4nchk/y,’

‘2‘(K2-kT,‘=k2+kT‘=(@’m2/D)”2

(7)

equation the

(8)

,where ai~ are the arbitrary constants (i= I 2, 3, 4).

From the conditions (4)-(6) we obtain four equations connecting the
arbitrary constants for neighboring spans which can be written in a matrix form:

an = Aan_l,

aln

a2n
an =

a3n “

a4n

Matrix A is expressed as follows:
C – 2k&s -(S + 2ksc)

A=
S – 2k2~c C + 2k2~s

2k2&S 2k2&c

2k2~c -2k2~s

-2k&S -2ksC

-2kXC -2kXS

C+ 2k2&S S+ 2k2EC ‘

S+ 2kXC C + 2kXS



Here additional symbols are derived:
s = sinkzl, c = cos k.J, S = shkl, C = chkl;

EIJkf – pI~2F ; ~ = GJ~k: – plm2Jp
& =

4k2k~2D 4K2~ “

For the task solution we’ll use the method developed in [2]. According to this
method matrix A is written in the basis of its own vectors or is transformed into
Jordan form when it has multiples to eigen-numbers. As a result we get analytical
expressions for deterrninin g the eigen-numbers and arbitrary constants at different
values of s and x which can be directly used for the effect evaluation of the

elasto-inertial stiffener features on stiffened plate vibrations.

INVESTIGATION RESULTS

At ~ + 0 two equations for determiningg the
sink2/ = O;

eigen-numbers are obtained:
(9)
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(lo)

The respective expressions for aj~ at S # O are given as follows:
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and at s = O they are:

a,n = (-1)”, az. = a~n= a~n= O. (12)

From Eq.(9) the eigen-nurnbers follow which correspond to the freely-supported
plate span vibration and fi-om(8) and (12) the sinusoidal vibration forms follow.

For arbitrary eigen-wave number kl in xl- coordinate the system of
.

equations (9), (1O) gives an infinite number of eigen-number k2 groups in X2 -

coordinate within the limits of nr/1 < ~2 < x(r + 1)/1. Here r = O, 1, 2 ... are the

numbers of groups which, by convention, will be referred to as zero, first, second,
etc. The quantity of eigen-numbers in the group at r >0 is equal to the number of



spans. The quantity of eigen-numbers in the zero group depends on the dynamic
rigidity but never exceeds the value of N – 7.

In a general case an arbitrary fixed value of ml/lq can be set in correlation

with dependencies of dimensionless reduced dynamic rigidity (kzs) on a

dimensionless wave number (kzl) at different values of q/A/. Such dependencies

for the case of ml/ll = 0.3 are presented in Fig. 1. Abscissas of intersection points

of the obtained curves with the curve

I(,E=[(k2/)’+2(w//,)’]-v2
[ }

3(1-v2pw4)J-5q(~’’)’+(w)’] (1,)

/h’q(k’/)’ +(qll)’] - 4plh

()correspond to dimensionless eigen-numbers ~21 of the stiffened plate vibration.

The positive values of k2s correspond to the determining part of elastic

terms and negative ones correspond to that part of inertial terms. At high bending
rigidity of stiffeners there is possible a case when the curve predicted according
toEq.(13) does not cross the region of eigen-number existence which correspond
to the zero group, i.e. at k21< n there will be no eigen-numbers. Taking into

account the relationship between eigen-numbers and frequencies

(Da= k:(D/ph)’”2, k: = k: + k;, k2 = k2(k1, E, N, r, q), (14)

one can state that in this case the stiffened plate will not have eigen-fi-equencies
lower than the first eigen-frequency of a freely-supported separate span.

Fig.2,a shows as an example some predicted eigen-fimctions (forms of
eigen-vibration) of the plate with three stiffeners of the same material (alurniniurn

alloy) of which the plate is made, at h = 5 x 10-4m, mll/l = 0.6,

F=6.3X10-3m2, J=l.18X10-5m4; Fig.2,b -at h=2X10-3m, mll/1=0.3,

F=4.5X10-3m2, J=3.75X10-Gm4.
In the first case the stiffeners are characterized by a high bending rigidity,

in comparison with the plate, and function k2E does not cross the existence

region of eigen-numbers of the zero group. In the second case the bending rigidity
of stiffeners is small. Function k2E crosses the existence region of eigen-

numbers of the zero group. Therefore two eigen-numbers of the zero group
appear the value of which is smaller than the first eigen-value of a freely-
supported separate span. The first two vibration forms of the four ones shown in
Fig.2b relate to the zero group and the other two refer to the f~st one. It is well
seen in Fig.2b that at small values of k2s the eigen-fimctions are close to those

sinusoidal i.e. the stiffeners only slightly deform eigen-vibrations of the plate with
general sizes 11x 12.



At E+ m and x # O the following expressions for deterrninin g the eigen-
numbers and constants aj in Eq.(8)for the forms ofeigen-vibration areobttied:

k~cs – kc +2kk~xcc . . .. SE.
kzS – ks N

(15)

al~ = (C – c)~, a2~ = -aJn = bls + b#, a3n = (C - c)%, (16)

qnxq(n - l)Z _ s+ 2kX(C - c)]sin~,bq= Scsin [

b =CSsin~~’)n + [S + 2k~(C – c)] sin%.

The forced vibration and acoustic radiation of arbitrary elasto-inertial
systems are sharply reduced at the frequencies lower than its lowest eigen-
frequency. Therefore its lowest eigen-frequency increase leads to significant
reduction of vibration and acoustic power radiated at low fi-equencies. The lowest
eigen-frequency of the stiffened plate can be displaced into the higher frequency
range by reducing the stiffener step. This stiffener step reduction is usually
accompanied by their rigidity decrease and this can lead to occurrence of eigen-
fiequencies of the zero group the value of which can appear to be even much less
than the lowest eigen-frequency of the plate with a large step of stiffeners.

The above obtained expressions can be used not only for the evaluation of
plate regularities and trends associated with the effects of bending and torque
rigidity of stiffeners but also for deterrnining the relation between the plate and
stiffener parameters at which the zero group frequencies will be deliberately
absent. This relation can be written in the form of condition:

b-(b2 - 4a)v2 >2 atk21 <n. (17)

It is obtained without regard for dynamic torque rigidity of stiffeners. Taking into
account its additional influence one can obtaine some increase of the lowest
eigen-fi-equency, so that the lowest eigen-fi-equency of the stiffened plate at
fulfilling the condition (17) will be deliberately higher than the first eigen-
fiequency of the freely-supported separate span. If we substitute the parameters
of stiffened plates the vibration forms of which are shown in Fig.2 into (17) we
can see that in the first case (see Fig.2a) it is fi.dfilled and in the second case (see
Fig.2b) it is broken.
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Fig.1.Effect of flexural rigidity of stiffeners on eigen-numbers of the stiffened
plate: l-q/N =1.0; 2-O.875; 3-O.75; 4-O.625; 5-0.5; 6-0.375; 7-O.25; 8-O.125; 9-O
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Fig.2. Forms of stiffened plate eigen-vibrations at high (a) and low (b) flexural
rigidity of stiffeners (in comparison with rigidity of plates)


