
FIFTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION

DECEMBER 15-18, 1997
ADELAIDE, SOUTH AUSTRALIA

ACTIVE EQUALISATION OF THE SOUND FIELD
IN AN EXTENDED REGION OF A ROOM

Arturo Orozco-Santillti
Department of Acoustic Technology, Technical University of Denmark

Building 352, Dk-2800 Lyngby, Denmark

ABSTRACT
A theoretical study of spatial sound equalisation in an extended region in a room has been

carried out. The purpose is to reproduce sound without significant spatial fluctuations and to
minimise the spectral coloration at low frequencies in a specified region of the room. The
problem is first studied by means of an idealised frequency domain model. The analysis is based
on the calculation of the complex source strengths that minimise the difference between the actual
sound pressure and the desired sound pressure in the listening area. Results in relation to the
position of the sources, the frequency range, and the size and location of the listening area are
presented. However, the frequency-domain approach results in non-causal impulse responses that
can be realised only at the expense of a delay. Therefore, this analysis is supplemented with a
study of the equalisation carried out in the time domain. Here, a solution constrained to causality
is determined. The duration of the impulse response should be minimised as well in order to
avoid ethos, which are undesirable in the reproduction of transient signals. This causality-
constrained equalisation is compared with the optimal solution obtained in the frequency domain.

INTRODUCTION
When broadband sound is reproduced in a room, it is modified because of the resonances of

the enclosure. At low frequencies the acoustic response of a normal listening room is dominated
by distinct resonances and their associated mode shape functions. This means that music, speech,
and other signals reproduced in a room by a conventional audio system will undergo a dramatic
spectral coloration because of the room response. Since this response implies a linear distortion
of the sound, this usually represents an undesirable effect. The number of acoustic resonances in
a given frequency band (the modal density) increases with the square of the frequency, which
means that the spectral coloration of the reproduced signal is not as severe a problem at higher
frequencies.

The equalisation of the frequency response at one or multiple single points in an enclosure
has been studied by several authors [1-4]. However, the resulting area of equalisation is small
and it is reduced when the frequency is increased. Thus, the system is very sensitive to changes
in the position of the listener’s head. In the present study the local room equalisation has been
desired over an extended area, large enough to allow for movements of the listener.



The general objective of the work is to study to what extent reducing the effect of the
acoustic response of the room is possible at very low frequencies in an extended region of the
enclosure (the listening area). Thus, a flat frequency response is sought in this area, which is a
finite part of the space inside the room rather than a single point. This equalisation is considered
to be carried out by passing the available audio signal through digital filters.

EQUALISATION IN THE FREQUENCY DOMAIN
The complex sound pressure amplitude pin a lightly damped rectangular enclosure at the

position r and steady harmonically excited by L pistons can be expanded into series of
eigenfunctions Y?nas [5]
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Here o is the driving angular frequency; p is the ambient density; ~, is the damping ratio of the
nth mode; An is a scaling factor that depends on whether the mode is one-, two-, or three-
dimensional; k is the wave number; ql is the strength of the lth piston and Al its area; V is the
volume of the enclosure. In addition kn2= (Tcrq/lx)2+(nny /ly)2+(TCnz/lZ)*,where n., nv, nZ are
integers and lX,lY,lZare the side lengths of the enclosure in the x, y, and z directions, respectively;
Zl(r) is the transfer impedance from the lth source to the point r.

The objective is to equalise the sound pressure in a listening area to a desired complex sound
pressure pd It is accomplished by rninirnising a cost function J defined as [6]

J = ~ fvlp(r9-pd(@12~v,
T

(2)

where VT is the volume of the listening area. In a practical situation this integral must be
approximated by a sum at a finite number M of points (sensors) in the listening area as follows

(3)

Here r~ is the position of the mth sensor, p = Zq according to Eq. (l), and
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Therefore, the estimated cost function can be reduced to a quadratic form as

J=q%4q+q%+6Hq+a, ~ (5)

where L = (l/fw)zHz , 6 = (l/M)zHpd , d = ‘(1/kf)p~pd . (6)

Since Eq. (5) is a quadratic function of q, the optimal values of the strength of the sources that
minimise ~, and its minimum values are given, respectively, by [6]

‘o = -L-%, ~. =J - 6HA-’6. (7)

Simulation Results
Here, the shown results were obtained with computer simulations with programmed

developed in Matlab and running on a PC. A rectangular room with dimensions 2.5 m, 3 m, and
2 m, in the directions x, y, and Z, respectively, was considered. A damping ratio equal to 0.1 for
all the modes was assumed. In the modal summation, 3,050 modes were taken into account,



which correspond to a natural frequency less than 1200 Hz. This number of modes was sufficient
to obtain reliable results. Eight sound sources modelled as squared pistons with a side length of
0.1 m were used. The listening area had a cubic shape with its sides parallel to the sides of the
room. It should be mentioned that several calculations of the optimal equalisation from Eq. (2)
that were carried out resulted relatively time-consuming. It was due to the integration over the
listening area for each mode and the limitations of the memory of the PC. Therefore, Eq. (3) had
to be used. The calculations shown in this part were carried out with 100 sensors distributed in
the listening area, which provided an adequate approximation of the optimaI equalisation. The
desired complex sound pressure in the listening area was set to l+jO Pa for all the simulations that
were carried out. A value of JO= 0.05 Paz was chosen as the criterion for an adequate equalisation.
With this value, the fluctuations of the obtained sound pressure from the desired one are less than
k 3 dB in almost the whole listening area. The error is bigger near the boundaries of this area,
specially in the corners.
Position of the Sources. The effect of several source positions in the room was first examined.
A listening area with a side length of 0.4 m and its centre fixed at the point (1.10,1.00,0.85) was
assumed. Fig. 1 depicts six different sets of source positions used in the simulations, and the
curves of the ~0as a function of the driving frequency corresponding to these sets are shown in
Fig. 2. It can be seen that the best solution with eight sources was obtained when they were placed
one in each corner of the room (set 5). As a reason for this result, it can be considered that in this
case all the modes can be excited by each of the eight sources, and therefore, it is possible to have
a better control of every mode. This idea can be supported by comparing with the result of the
first set of the source positions. Here, the degree of the equalisation is the worst shown in Fig. 2,
and in this case only the x-axial modes can be controlled more properly compared to the others.
Furthermore, the result was better with the set 2, and it was improved with the set 4. Although
all the modes can be excited in the last case, it is not possible to excite every mode with all the
sources. For comparison, the result with sixteen sources is also shown in Fig. 2. It can be seen that
the improvement is not significant although the number of sources has been double. In what
follows, all results have been obtained with eight sources placed one in each corner of the room.
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Fig. 1: Schematic diagram of the enclosure Fig. 2: Graph of ~0vs frequency correspond-

and different sets of sources positions exam- ing to the sets of source positions that are

ined in the equalisation problem. shown in figure 1. ++ set 1, -- set 2, — . set
3, ... set 4, — set 5, xx set 6.

Position of the Listening Area. It was found that the level of the equalisation decreases lightly
when the target region is near any wall of the room. In a general way, the results can be set into
three groups: (a) The listening area is in contact with two or three walls or near to them. Here the



degree of the equalisation was the worst among the different positions examined. (b) The
listening area is in contact or near one wall, and in this case the result was improved. (c) The
listening area is relatively far from any will of the room. With this situation, the best results were
obtained. These effects are illustrated in Fig. 3. The side length of the listening area was fixed to
0.4 m. However, the differences in the performance among the three groups are relatively small
in the frequency range where the cost function has a value less than 0.1, which corresponds to an
adequate level of equalisation. Furthermore, this effect near the walls is less pronounced when
the frequency is reduced. Consequently, if the listening area is farther from any wall of the
enclosure than one quarter of the wavelength at the maximum frequency to be equalised, then the
performance is practically independent of the position of this area. This is another advantage of
placing the sources in each corner of the room. When the side of the listening area was less than
20 cm, the level of the equalisation was more sensitive to the position of this area for some values
of the driving frequency, but the fluctuations in the cost function were not very serious.
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Fig. 3: Graph of 30vs. frequency for different Fig. 4: Graph of JOvs. frequency for different
positions of the listening area. The positions sizes of the listening area centred at
of its centre are: ... (0.2,0.2,0.2), – . (0.9,1.3,1.0). The numbers correspond to the
(0.2,0.2,0.75), — (1.0,0.2,0.7), XX side length of the listening area in cm.
(0.2,1.8,0.75), ++ (1.1,1.0,0.85), --
(0.9,1.3,0.7).

Frequency Range and Size of the Listening Area. The relation between the size of the listening
area and the maximum frequency that allows an acceptable level of equalisation was examined.
The graphs of the cost function vs. frequency for different values of the side of the listening area
are shown in Fig. 4. Here the position of the centre of the listening area was held fixed at
(0.9,1 .3,1 .0) and its size length was varied. For each size of this area, the maximum driving
frequency that allowed a value of JO< 0.05 Paz was determined. The graph of the wavelength that
corresponds to this maximum frequency vs. the side length of the listening area is depicted in Fig.
5. Here it was possible to fit a straight line in a least-squares sense; its slope was 2.58 and its x-
intersection 0.005 m. The latter number is relatively small and it might be the result of errors in
the estimation of the cost function.

When another value of the cost function is chosen instead of 0.05 Pa2, the linear relation will
be held with a different slope provided that this new value is small enough. It can be said that if
the side of a cubic listening area is less than approximately one third of the smallest side of a
rectangular room, then the maximum frequency that can be equalised with a good degree is
inversely proportional to the side of the listening area.
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Fig. 5: Graph of the wavelength
corresponding to 30 = 0.05 vs. the side
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FIG. 6: Block diagram of the equalisation
problem

OPTIMAL EQUALISATION IN THE TIME DOMAIN
The filters that produce the optimal equalisation in the frequency domain correspond to non-

causal impulse responses, which can be implemented only at the expense of a delay. Since long
delays are not acceptable for many purposes, a revised design criterion that takes account of
causality and the duration of the impulse response of the equalisation filters has also been
examined. The duration of these impulse responses should be minimised in order to avoid ethos,
which are undesirable in the reproduction of transient signals. For this case, the optimal
equalisation was carried out in the time domain.

Fig. 6 depicts a block diagram of the equalisation problem in the time domain. This
procedure has been discussed by Elliott and Nelson [1] for the case of one source and the
equalisation at four single points. A similar implementation has been used by S. Laugesen [7] for
noise cancellation in enclosures. Here M microphones are considered. The aim is to design L
digital FIR filters with impulse responses hi(n), one for each sound source, such that the

obtainable signal din(n) at the microphone m is the best approximation to the desired signal din(n)

at that microphone. In this case din(n)is a delayed version (~~ samples for the mth sensor) of the
original input signal x(n). In Fig. 6, y(n) represents the vector of input signals to the L sound
sources, and cd(n) is the impulse response from the input of the lth source to the output of the
mth sensor. Therefore, there are L x M of such impulse responses in the represented reproduction
chain in Fig 6. It was assumed that these impulse responses can be modelled as FIR digital filters
with J coefficients. In addition, the equalisation filters will have a FIR structure as well, with I
coefficients.

The optimal solution is obtained by minimizing a performance index defined by

{}

I’ = E ~ lem(n)12 = E{eTe} , (8)
~=1

where E represents the expectation operator and em(n) = din(n) - din(n).

If yl (n) is the input signal to the lth source, Cdj is the coefficient j- 1 of the reproduction chain
from the lth source to the mth sensor, and ali is the coefficient i-1 of the control filter
corresponding to the lth source, then



I-1 L J-1

YJn) = ~ a~ix(n‘O, din(n) = ~ ~ Cmtiyl(n -j) .
i+ L=l j.o

(9)

(lo)

It follows that the error signal em(n) can be written as
L J-1 J-1

em(n) = dm(rz) -~ ~ ali rlm(n-i), where rim(n) = ~ Cmox(n-j) .
1=1j+ j.0

The error at the M microphones can be expressed as

El=r!l-[:l: ““” fl~::::llll ’11)

where ai = [ali ... ah ]T. In a short form, Eq. (15) can be written as e(n) = d(n) - Ra. Finally one
can obtain the performance index as

17 = aTE{RTR}a + aTE{ -RTd(n)} + E{ -[RTd(n)]T}a + E{d(n)Td(n)} . (12)

This performance index is a quadratic function of the coefficients in the equalisation filters, and
therefore, it has a global minimum value. The optimal set of control coefficients is found to be

aop = (E{RTR})-lE{RTd(rz)} . (13)

Simulation Results
In the simulations described here, a source input signal with a delta function as the

autocorrelation function was used. This is the worst case; therefore, a better result is expected if
the signal to be reproduced is predictable. A listening area with a side length of 0.4 m and centred
at the point (1.10,1.00,0.85) was considered. According to the results in the frequency domain,
it was seen that an adequate optimisation with 30<0.06 Pa2 was possible with this listening area
for a value of the driving frequency from zero up to 350 Hz. The same frequency interval was
used here in order to compare the results in both domains. Thus, a sampling frequency of 700 Hz
was assumed. The sound sources were modelled as a first-order analog high pass filter with one
pole at 70 Hz to have a more realistic situation. 27 sensors uniformly distributed in the listening
area were used, which produced an adequate estimation of the equalisation.
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Fig. 7: Joobtained from the optimisation in the
time domain vs. frequency for different delay
values: ++ 5 samples, — . 6 samples, --8
samples, — 10 samples, ...30 samples. The
corresponding value for the optimal solution in
the frequency domain is also shown (x x).

The discrete impulse responses of the
reproduction chain were obtained from fre-
quency response functions calculated with the
modal model by using the inverse FIT. These
frequency response functions had to be multi-
plied by the transfer function of a low pass
filter, which corresponds to the action of the
anti-aliasing filter used in practice anyway. A
sixth-order analog lowpass Butterworth filter
with a cutoff frequency of 175 Hz was applied,
and 200 coefficients were used in the FIR
filters of the reproduction chain. The simula-
tions were carried out with 60 coefficients in
the control filters. It was observed that practi-
cally the same result was obtained with 60 or
more coefficients, and that the optimal equali-
sation was affected if the number was reduced
to 40.



The same desired signal was used at the different M sensors. The number of delays 5. used
to generate the desired signals at the sensors turned out to have a significant effect on the optimal
solution. To compare the results of the optimal equalisations corresponding to different numbers
of delays (8.), the optimal causal filters were transformed back to the frequency domain and then
used in the modal model to calculate JOas a function of the frequency. It should be mentioned
that in this case only the amplitude of the sound pressure was taken into account to obtain ~O.Here
JOwas estimated with 100 sensors distributed in the listening area, and the curves are shown in
Fig. 7. The best equalisation calculated before in the frequency domain is also shown for
comparison. One can see that the optimal equalisation in the time domain is better when the
number of delays is increased. This occurred up to a 16-sample delay. After this value the
estimated cost function practically did not change, and the curves were similar to the one
corresponding to 30-sample delays shown in the figure. It should be noted that a poor equalisation
was obtained if the number of delays was less than 6 samples. This number of delays corresponds
to the time of 5-6 samples that takes to the signals to travel from the farthest sound sources to the
listening area.

In the examined simulation, a delay of 10 samples was considered adequate for an acceptable
level of the equalisation up to 350 Hz. That was the minor delay that corresponds to a relatively
small value of JOat 350 Hz (less than 0.15 Pa*). It can also be seen in Fig. 7 that the equalisation
presents problems at very low frequencies, where JOhas values about 0.1 Pa2. An explanation
might be that the sound sources were modelled as high pass filters, and therefore, their response
are almost zero at these frequencies. Nevertheless, this is not a serious problem since these
frequencies are not audible.
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Fig. 8: Impulse and frequency responses at two sensors after the introduction of equalisation filters
(solid lines), and the original frequency responses at these sensors (dashed lines). (a): sensor at the
point (0.9,1 .0,0.65), (b): sensor at the point (1.3,1.2,1,05). In 21 of the 27 sensors the equalisation
was similar to (a), Here (b) corresponds to the worst result obtained.

The impulse and frequency responses at two of the 27 sensors after the equalisation was
carried out are shown in Fig. 8. The original frequency responses at these sensors are also shown.
In 21 of the 27 microphones a flat frequency response with fluctuation within&3 dB from 5 to
350 Hz was obtained. The results are similar to those presented in graphs (a) in Fig. 8. The worst
result was obtained with the sensor placed at the point (1.30, 1.20,1.05), which corresponds to
the graphs (b) the figure. In the other sensors, an equalisation within&3 dB from 5 to 275 Hz in



the frequency response was obtained. As one can see, it was possible to achieve an adequate level
of equalisation. However, as a consequence of the causality restriction, the optimal solution is
affected and the error is increased at high frequencies. An important consequence is that an extra
delay has also to be introduced in order to improve the performance of the equalisation.

CONCLUSIONS
A theoretical study of equalizing the sound field at low frequencies in an extended region of

a room has been carried out. Based on the results of computer simulations in the frequency
domain, it can be concluded that a good optimisation can be obtained in an extended region inside
a room in a given interval at low frequencies. Nevertheless, the performance is reduced with the
frequency, and the size of the region depends on the maximum frequency to be equalised.
According to the results, for a listening area of cubic shape, its side length cannot exceed half
wavelength at the maximum frequency of the interval to be optimised if fluctuations in the
obtained sound pressure less than *3 dB from the desired value are required in the listening area.

It was also found that a better equalisation was obtained over a frequency range when the
sound sources are placed in the corners of the room. In this case, it was also observed that the
performance of the equalisation was lightly reduced when the listening area was placed near the
walls of the enclosure. However, this effect is less pronounced when the frequency is reduced.
Thus, the equalisation was found to be practically independent of the position of the listening area
as long as it was approximately farther from any wall than a quarter of the wavelength at the
maximum frequency to be equalised.

Unfortunately, the filters for the optimal solution obtained in the frequency domain
correspond to non-causal impulse responses. Another approach is to perform the optimisation in
the time domain. It was shown that the constrain of causality degrade the performance predicted
by the unconstrained optimisation from the frequency domain, and that an extra delay is needed
to obtain an adequate equalisation. A compromise between the length of the delay and the level
of the equalisation has to be made.
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