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ABSTRACT
Signature analysis deals with the extraction of information from measured signal

patterns and this paper proposes a new procedure to enhance the mechanical signature related
to a faulty element in a rotating machine. The enhancement operation is implemented in the

time lag domain using envelope signals which are obtained using a multiple carrier amplitude
demodulation technique. This procedure is studied theoretically. Also it is evaluated using
simulated digital sequences and vibration measurements from a railway track and a paper
machine.

1. INTRODUCTION
In vibration analysis, mechanical signatures can be considered to be measured response

vibration patterns which characterise a specific vibration source and convey information about
it [1]. Mechanical faults in rotating machines often generate a sequence of impulses with a
given repetition rate. Each of such impulses excites resonances of the system under
measurement and the resonant vibrations usually die out very quickly because of energy
dissipation in the system. Consequently, the response vibrations caused by such impulsive

sources show up as a sequence of damped impulse responses which have the same repetition
rate as the impulse sequence generated by the mechanical faults. This mechanical signature
can be interpreted as amplitude modulation and has been widely used to diagnose mechanical
faults in rotating machines [2, 3].

Bandpass Filtered Envelope Analysis, in brief BFE~ (bandpass filtering and amplitude
demodulation) [2, 4] is one of the techniques used to diagnose mechanical faults in rotating
machines by analysing the signature mentioned above. Optimum application of this technique
depends upon the choice of a proper frequency band, in which the vibration is mainly caused
by the mechanical faults in question. In practice, this frequency band can be chosen by

comparing spectra measured at different stages of deterioration and inspecting the variation of
vibration levels in different frequency bands. A measurement at an initial stage is very usefil



for this purpose, but in the case where an initial measurement is not available, different
fi-equency bands have to be tried experimentally.

In Reference [3], a multiple carrier amplitude demodulation procedure (MCAD) was
proposed, which is non-band-dependent and has been found very usefi.d in many practical
applications because of its simple implementation and more valid trending indication. In the
case of a low Signal-to-Noise Ratio (SNR), however, the MCA.D procedure might not be able
to reveal the signature of a mechanical fault because of noise masking effects.

In this paper, a new procedure based on the MCAD procedure is designed to enhance
the signature of a mechanical fault in rotating machines.

2. MULTIPLE CARRIER AMPLITUDE DEMODULATION
Usually, incipient mechanical faults in rotating machines can excite more than one

resonance of a system in a very wide frequency band. These resonances are all modulated in a
very similar way and can be approximated as [3]:

x, (1)= A4(& A,da’ (2.1)
,=1

where CXi= o ,t + q, and A4(t) is a real and positive fimction representing the envelope of

mechanical fault signals. It includes the periodic exponential decays associated with each
resonance which for simplicity are thus assumed to have approximately the same time constant
(the actual envelope would be dominated by the longest time constant).

In practice, measured vibrations are usually contaminated by various types of
background noise. These typically are band limited, and can be expressed as the- sum of
narrowband noise signals:

n(t) = N (&B,dpi (2.2)
,=1

where P = co~t + (3,(t), N(t) is a real and positive envelope fimction which varies slowly with

time, ~(t) a slowly varying phase fimction, and to., the central angular frequency of the ith

narrowband noise component [5].
Mechanical faults in a rotating machine could also cause additive mechanical vibrations

at the same time. Furthermore, even perfect mechanical elements in operation can contribute
very strong, additive discrete frequency components, such as gear meshing frequencies. These
additive fi-equency components can be expressed by their linear combination:

X2 (t)= ~c, C?’y’ (2.3)
,=]

where yi = f2it+@, .

Thus the measured response vibrations are usually the sum of Equations (2. 1-3):

x(t) = A4(& A,da’ + N (t)~Bi#I + ~C,dy’ (2.4)
1= I ,=1 1=1

The modulus of the measured response vibrations can be expressed as:

x(t)= M, (t)(l + y); (2.5)
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12P(t)
+ f’kf(t);,$,~ck COS(Ct, – ~k) + N(t)$, $,B,Ck COS(fl – ~k) – —

,SI k=] 1=1 kzl M,(t)

A4, (t)=aM(t)+bN(t)+c

P(t) =
ackf(t) + abA4(t)N (t) + bcN (t)

M, (t)

and: F E’ C=Fa= ~Ai, b=

It can be proved that [3]:
Iyl <1

Thus Equation (2.5) can be expanded into:

{
lx(t)l=A4,(t l++y-~y*+fiy’-...

)
By using the relationships in Equations (2.6a=d), Equation (2.8) can be rearranged as:

x(t) = f (t)+ f2 (0

where: j(t) = W(t)+ bN (t)+ C- P(t)

m=wtr ‘(t) +Lt+i_ ‘and
1 ()ikf,t 2 8 16””” J

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

The above derivation shows that taking the modulus of response measurements demodulates

the amplitude modulated vibrations. Ailer this demodulation, the modulating fimction, M(t), is

r

N

enhanced by a factor, a = ~ A,2, which reflects the power in all the carriers (thus the term
,=]

Multiple Carrier Amplitude Demodulation, in brief MCAD). Also it is contaminated by bN(t),
P(t) and &(t).

The modulating fimction of interest is essentially a low frequency fimction. The
contamination from ~z(t) is essentially of high frequency components [3] which could be

eliminated by lowpass filtration. Therefore, the main masking effects on M(t) come from the
second and fourth terms in Equation (2.10), both of which are of a random nature. How to
reduce their masking effects on M(t) to a cetiain extent and firther enhance M(t) will be
discussed in the next section.

3. ENHANCEMENT OF MECHANICAL FAULT SIGNATURES
Equation (2.9) shows that the MCAD technique can extract the modulating finction,

A4(t), contained in measured response vibrations. In many practical cases, the MCAD
technique can clearly reveal the frequency components of the modulating iimction in the
fi-equency domain [3].

However, the frequency components of the modulating ii.mction of aA4(zj might be
masked in the case where the noise terms, bN(fl and P(t),in Equation (2.10) are high. A4(T)is
a periodic iimction and correlates with itself in the whole time lag range. N(t) and P(t) are of
random character. Both of them produce the highest correlation with themselves around zero



time lag and drop to very low levels away from zero time lag. Also the crosscovariance
among the above three terms are at lower levels, compared with their autocovariances. These
properties are very usefil in suppressing the noise term to a considerable extent.

The autocovariance of ~ (t) is:

C(r) = E[{f(i)-u}{~(i +r)-u}] = lii-n;j{J(t) -u}{J(z +r)-u}dt (3.1)
o

where: # = EIY1(01
= aE[kf(t)] + bE[N(t)] + C + EIP(I)] (3.2)

=uM+zfN+c+up

Inserting Equation (2. 10) into Equation (3. 1) and using the relationships in Equation (3.2), we
can produce:

c(r)= cM(r)+c. (r)+cp(~)+cmP(~) (3.3)

where CM(T) = E[{d4(t) - uM}{uM(t + r) - UM}]

CM(T) = E[{bN(t) - z/N}{W(I + r) - UN}] (3.4a)

Cp(r) = E[{P(t) -ZJP}{P(I + r) -ZJp}]

and: cw(~)=cm (~)+cw(~)+cm(~) +cPM(~)+cw(~)+cP. (~) (3.4b)

represent the corresponding auto- and crosscovariance functions, respectively. All the

autocovariance finctions are real even fimctions, while the crosscovariance fi-mctions are
neither even nor odd fi,mctions, but they are related by:

c,,(r) = Cm(-r) (3.5)

This relationship makes their sum a real even timction, meaning that the autocovariance

iimction, C(r), in Equation (3.3) is a real even fimction and all its frequency components are
cosine components.

Another usefhl property of autocovariance finctions is:

c(o) = a’; CM(0)= 0;; CN(0) = 0:; c,(o)= a: (3.6)

which are the mean square values of J(/), aM (t) , bN(fl and P(l), respectively. Equation

(3.6) shows that CM (7), C~ (r) and CP (r) are all positive around ~ = O where their

values add up in phase in equation (3.3).
Furthermore, both N(i) and P(t) have random properties and their autocovariance

fi,mctions satisfjf:
cN(m) = o; c,(m)= o (3.7)

This equation shows that both N(t) and P(t) become uncorrelated with themselves as time lag

increases. Actually, C~ (r) and CP (r) drop to a very low level as the time lag r departs

from zero.
In Equation (3.3), CWP (r ) represents the crosscorrelations among a deterministic

and two random finctions (all with zero mean). Unlike the autocovariance Ii.mctions, CM (r )

and CP (r), there will not be a particular time lag, q around which CWP (~ ) can stand

above the remaining components. This means that their components would usually be at low
levels. In the case of a low S~ this level is about the same as the components of C~ (~ )

when the time lag, ~, is away from zero.
From the discussion above, it can be seen that the autocovariance fi.mction of J (~)

concentrates great amounts of energy of the second and fourth terms in Equation (2.10)
around the zero time lag. So the two noise terms can be suppressed by editing the
autocovariance finction of J(~) around the zero time lag. A simple way to edit the



autocovariance fimction is to Clip the Autocovariance Function of a Rectified Signal around
the zero time lag (thus called the CAFRS technique).

4. ENVELOPE OF NARROWBAND NOISE
The main masking effects on M(l) come from both N(?) and F’(t). N(t) is the envelope

of narrowband noise, and l’(t) a fimction of N(t) and A4(t) and of random character too. It is
known that A4(t) is a real positive periodic fl.mction whose spectrum appears as a family of
harmonics centred on zero frequency (in the case of one modulating source). But the
probability property of N(t) and its spectrum remain unknown and need to be further
investigated in order to understand why editing the autocovariance fimction of a rectified
vibration signal can enhance the signature, M(?), of mechanical faults in rotating machines.

Both N(t) and ~t) in Equation (2.2) are random variables [5]. In the case of

narrowband Gaussian noise, 0(t) is uniformly distributed in [0, 27r] with a probability density

finction (PDF) of O.5/z, and for a fixed but arbitra~ t,N(i) obeys the Rayleigh probability
law:

~ (0 .N’(fy2a’
flN(t)]= ~e (4.1)

as shown in Figure 4.1. For the Rayleigh distribution, its mean value is p = am and its

variance ts2 = (2 – 7r/2)a2.
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Figure 4.1. Probability Density Functions of (a) the Envelope [Dashed line - Generated

Using Equation (4. 1) and Solid Line - Obtained by Demodulating Equation (2.2) for a
particular case] and (b) the Phase of the Narrowband Gaussian Noise.
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Figure 4.2. Narrowband Gaussian Noise:
(a) Time Wave and (b) Spectrum.
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Figure 4.3. Autocovariance Functions of
(a) Narrowband Noise and (b) Its Envelope



This kind of noise can be generated by bandpass filtering a wideband noise with flat
spectral density. Figure 4.2 shows an example of a narrowband noise generated in such a way.
This figure clearly shows the modulating effects due to the slowly varying envelope, N(t).
Demodulating the narrowband noise by taking its absolute value and applying Iowpass
filtration produces the envelope, N(t), which can be used to calculate its PDF. Figure 4.1 (a)
shows a thus obtained PDF (solid line) which corresponds well to the theoretical one (dashed
line).

Figure 4.3 compares the autocovariance fi.mction of the narrowband noise shown in
Figure 4.2 with that of its envelope, N(l). For both autocovariance finctions, their

components around T = O are well above (at least an order higher than) the remaining
components. However, the prominent components in Figure 4.3 (a) vary between positive and
negative while those in Figure 4.3 (b) are all positive.

5. APPLICATION

5.1. DIGITAL EXAMPLES
Digital sequences have been generated using Equation (2.4) to simulate a bearing with

a outer race fault frequency of 16 Hz. This ‘bearing fault’ excites two resonances at 583 Hz
and 677 Hz, respectively. The contamination of the bearing signal was composed of an

additive frequency component of 37 Hz, and an additive noise signal centred on 600 Hz, with
a bandwidth of 200 Hz.
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Spectra of Autocovariance Functions: (a) without Editing and (b) with EditingFigure 5.1
Figure 5.1 shows the effect on the spectra of editing autocovariance iimctions for the

case where the bearing signal and the discrete frequency component have the same RMS
value, while the narrowband noise has triple this RMS value. The enhancement of the
harmonic family of 16 Hz can be clearly envisaged by comparing Figure 5.1 (a) and (b). The
discrete frequency component of 37 Hz is doubled to 74 Hz in Figure 5.1 and the frequency



component of 94 Hz is the difference frequency of the two carriers as predicted by Equation
(2.6a).

5.2. MEASUREMENTS ON A RAILWAY TWCK
Analysed here is a composite bearing signal which was constructed using an array of

seven accelerometers spaced at 1.8 m intervals along the track [6]. Track vibrations were
caused by a passing train which had known bearing faults at known positions. The faulty
bearing in question has two bad spans on one of its cups (out-board race).

Figure 5.2 shows the spectra of the composite bearing signal. The two spectra were
obtained using the BPFA and CAFRS procedures, respectively. Comparing Figure 5.2 (a)
with Figure 5.2 (b) can help assess the ability of the CAFRS procedure to enhance the bearing
signal in the case of low SNR. In Figure 5.2 (b), the peaks which stand out clearly at the
bearing characteristic frequency of 61 Hz (its calculated value is 62.4 Hz at test speed 60
km/h) and up to its fourth harmonic (as marked by the cursors) give a good indication of a
bad bearing with outer race defects.
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Figure 5.2. Spectra of the Composite Bearing Signal Obtained Using: (a) Bandpass Filtered
Envelope Analysis and (b) the CAFRS Procedure.

5.3. MEASUREMENTS ON A PAPER MACHINE
The actual signal was measured on a paper machine with an outer race bearing fault

[7]. Figure 5.3 shows the spectrum obtained using the CAFRS procedure. The harmonic
family with a frequency spacing of 5.5 Hz is due to a pneumatic lubricator. The harmonic
family (as marked by cursors) due to the bearing fault shows up clearly. It has been found that
the bearing signal is mainly concentrated in the vicinity of 5.4 kHz [7]. This special case
shows that the CAFRS procedure is able to reveal the bearing fault even when the bearing
signal is concentrated within a single narrow frequency band, and even in the presence of
considerable masking.
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Figure 5.3. Spectrum obtained using: the CAFRS Procedure

6. CONCLUSIONS
In this paper, a new procedure is designed to diagnose bearing faults. This procedure

is based on the Multiple Carrier Amplitude Demodulation (MCAD) technique and thus
includes all the advantages of the MCAD technique. For many practical applications the

MCAD techrique can produce satisfactory results. However, the new procedure can produce
still better results because of its ability to deal with a higher level of noise by enhancing the
mechanical signatures contained in measured vibrations.

The new procedure is non-band dependent and is very useful in the case where it is
difficult to find a frequency band in which bearing signals dominate. This is true for the
practical application of detecting bearing faults fi-om track response vibrations caused by
passing trains, as studied in this paper.
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