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During a modal test, a structure must be supported in some manner to the
surrounding environment. If a model of the structure is to be reconciled with modal
test data, then the support conditions must either be included in the model or
assumed to have negligible effects. For example, supports can be ignored in a
simulated free test if they do not affect the structure significantly. Frequently, a
precise determination of the actual support conditions is not performed.
Consequently, there is uncertainty in the conditions and how they affect both the
measured modal frequencies and modal clampings. This study examines the effects of
support conditions on the measured modal parameters, and discusses the proper
design of support conditions for modal testing.

Modal testing is frequently used to validate the accuracy of structural dynamic
models. The modal tests are performed on a structure to measure the modal
frequencies, damping ratios, and mode shapes. However during the modal test, a
structure must be supported in some manner to the surrounding environment. The
structure may even need to be constrained or preloaded in order to test it in some
operating condition. For example, an aircraft or rocket launch vehicle may need to
be preloaded in order to simulate the flight conditions, and constraints are added to
the structure to load it. These supports, constraints, or boundary conditions, will
affect the modal parameters of the structure.

To validate the structural model, the desired modal parameters are those for the
structure without the added supports. Thus, one must be concerned with the design
of the support conditions because they will affect the modal parameters. The added
stiffhess, damping, and mass need to be considered when designing the support
conditions. These additional conditions must be accounted for when experimental
data is compared with predictions from the model.



Historically, there has been concern for support stiffhess and its effect on measured
modal frequencies. Bisplinghoff, Ashley and Halfman [1] discuss the effects of
support stifiess and mass on the modal frequencies, based on results of Rayleigh [2].
Wolf [3] discusses the effects of support stiffness with regard to modal testing of
automotive bodies. He reports that the rule of thumb to simulate free boundary
conditions is to design the support system so that the rigid body modes, that is the
modes that would be at zero frequency except for the support conditions, are no
more than one-tenth the frequency of the lowest elastic mode. But, it is seldom
possible to achieve this separation for vehicle tests. He states that test engineers use
a 1:3 to 1:5 separation ratio between the rigid body modes and the lowest elastic
mode. Wolf shows that these stiff supports can lead to significant errors in the
measured modal fi-equencies.

In this paper we examine the effect of support conditions on the modal frequencies,
but our primary emphasis is their effect on modal damping ratios. Most finite element
models could include the support stiffhesses and masses in the model, thus taking
into account those effects. For validation purposes, the supported model could be
compared with the supported test for a true comparison. Then the support
conditions could be removed from the model. However, structural dynamic models
often do not initially include damping, but then use the measured modal damping
ratios from a test to create a model including damping. There is typically no
validation of the damping model; it is taken directly from the test with the support
conditions included. Consequently, one must be concerned with how the support
conditions affect the measured damping. Formulas are derived in the following
sections to predict the effect of support conditions on both the measured modal
frequencies and damping ratios. Several examples are included to demonstrate their
application.

E OF FREEDOM SYSTEM.-
Perhaps the best way to develop an understanding of the effects of support
conditions is to examine a single degree-of-freedom (dof) system. Wolf [3] also

‘ analyzed a single dof system, but we examine a somewhat different system, that also
includes damping. Let us consider a simple model, pictured below, of a freely
supported structure (free boundary conditions), consisting of two masses connected
by a linear spring and a viscous damper with motion restricted to a single direction.
This system has two modal frequencies: zero and ~(kt/m). The zero frequency mode
is called the rigid body mode as there is no elastic deformation, while the higher
fi-equency mode is the elastic mode. For the elastic mode, the masses move the same
anount but in opposite directions. Although this is just a two dof system, we can
think of the dofs as two modal dofs of a more complex multi-dof system.

m m

m@-



We could add support conditions in several ways, but let us add them symmetrically
as diagramed below. Here kt and ct designate the true stiffiess and damping of the
structure, while ks and cs designate the added support stifiess and darnping.
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This system is a two degree-of-freedom system, but we are really only concerned
with the effects of the supports on the elastic mode. Since that mode shape is
symmetric, we can simplify the equations by cutting the dynamic system in half, and
imposing a fixed boundary condition, as diagramed below.
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We now have just a single dof system, but with this system we can examine the
effects of a support system on the elastic mode of the original two dof system. This
model is even more usefid because it also models the effects of an added constraint
on the single dof system with a fixed boundary condition. This is a trivial model, but
we can gain insight fi-om its solution. The homogeneous differential equation is

mu+(ct+ c,)u+(kt+ks)u=O.

-L#mt cos(@ t),
Solving, we fmd u(t) = U. e

where the measured frequency, “.=-’
(1)

the damped natural fi-equency, d<(n=com 1– 2,

and the measured damping ratio, gm = (ct + cs)/(2mcom ). (2)

Now, following Wolfs example [3], we define the true frequency of the structure as

“t=-, (3)



and the rigid body frequency, due to the support stiflhess as

Substituting (3) and (4) in (l), we find a simple expression for the true frequency in
terms of the measured frequency and the support fkequency.

Or if (co<@2 a 1.0, then

(5)

(5a)

From (5), it is easy to see the effect of added support stiffhess on the measured
frequency of the test item. If the support stiffhess is such that the ratio of the rigid
body frequency, CDS,to the measured frequency, ~m, is 1:10, then the true frequency
would be less than one half of one percent different from the measured frequency.
So the 1:10 ratio is a good rule of thumb for most applications with reasonable
accuracy. However, if the ratio were 1:3 as referenced by Wolf, then the error would
be over five percent which generally would be unacceptable. Wolf shows a case in
which the error would be even as large as Meen percent for a different dynamic
system. However, as discussed earlier, the support stiffhess could be included in the
model, the supported model validated with the test data, and then the support
conditions removed from the model.

Let us now turn our attention to the measured damping ratio. Following the example
of the frequent y analysis above, let us define damping ratios for the true system and
for the support system.

(6)

Substituting (6) into (2), we find an expression which relates the three damping
ratios.

The above expression
other damping ratios.
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can now be solved

c-t@t + (i @s

for the true damping ratio in terms of the

This expression has similarities to that for the frequencies, equation (5), except that
the frequency ratio inside the brackets is no longe; squared a.hd it is also mu~tiplied
by the ratio of the damping ratios. So if we have a fi-equency ratio of 1:10, as the rule
of thumb suggests, and if the support and measured damping ratios are equal, then
there would be a ten percent error if the true damping was assumed equal to the
measured damping.



However, suppose now we are testing a lightly damped structure and that the
frequency ratio is still 1:10, but the support damping is five percent and the measured
darnping is one percent. Now the ratio of clampings in the brackets has a large effect,
and the true damping is only 0.5 percent. So one would have a hundred percent
error if one assumed the measured damping was the true damping. Let us now
consider the case in which the frequency ratio is 1:3. If the true damping ratio is
again 0.5 percent and the support damping ratio is five percent, then the measured
damping ratio would be 2.14 percent, resulting in three hundred percent error if one
assumed the measured darnping was the true damping.

From these examples and equation (7), one can see that the situation for the
measured damping ratios is different from that for the measured frequencies.
Assuming the true darnping ratio is the same as the measured damping ratio is much
more likely to result in huge errors than for the frequencies. Unfortunately, most
finite element models do not include damping, so one cannot validate a damping
model with test data, and then remove the support damping. Frequently, test-derived
modal damping is used in the model to create the damping model. In the next
section, approximate formulas will be derived for the frequency and damping
corrections for a general multi-dof structural dynamic system, similar to those for the
single dof system.

THE MU LTI-DEGREE- OF-FREEDOM SYSTEM
Let us f~st examine the real eigenvalue problem for the muki-dof system which yields
the eigen or modal frequencies. As we did for the singe dof system, we will
separately designate the true stiffness and the support stiffness matrices, and we can
write the eigenvalue equation for the true system as,

[Kt- q%] (p= o, (8)

where Kt is the stiflhess matrix of the unsupported system, mt is the eigenvalue
associated with the eigenvector $, and M is the mass matrix. For the supported
system, we add the stiffness matrix Ks for the support stiffness, and its eignenvalue
equation is

[ 1Kt+K~-mm2A4 I/=0, (9)

where ~m is the measured eigenvalue associated with the eigenvector V.

Now let us take the Ks to be small, that is, if we express ~m = cot + AoI and v=$+A$,
then Ad~m =s is small compared to unity, and A$ = O(g). Now, we can substitute
these expressions into (9) to yield

[
Kl+K~-

(
U*2 + 2A(II mm – Au )12&f (@+ A#)=Oo (lo)

Expanding (9) into separate terms, using (8), premultiplying by v’, and dropping

terms which are 0(&2), we have



(/$’[Kf – COt2M]A@ + y’ [KS – 2Ac0 COMM]I//g O. (11)

However, if we take the transpose of the first term in (11), use the fact that the
stiflhess and mass matrices are symmetric, we see from equation (8) that the f~st term
is zero. So (11) reduces fi.nther, and we can solve for Ace,yielding

1
Au=— v’ Ks v
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Further, if the mode shape ~ is mass normalized to unity
change is frequency is simply

Aco
1

~— ty’Ksy.
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This formula for the change in fi-equencv is quite sinmle. and

modal mass, then the

(12)

it is strai~htforward to
evaluate, using the finite ~lement &mlys~s of~he supp~rted structure. l%e matrix Ks
will have very few non-zero terms, so the triple product @KsqJ will be easy to
evaluate. Comparing (12) with (5a), one can see that the result for the multi-dof case
reduces exactly to that of the single dof case when Ks is just one by one and equal
to ks. Also note that ~m is in the denominator on the right hand side of ( 12), so at
higher modal frequencies A~/~m varies proportionally as (1/~m)2.

We can now turn to the issue of damping in a supported structure. For the support
damping, the situation is more complicated than for the modal frequency because one
will typically not have an analytical model of the darnping in the structure. But the
issue is the same as for the stiffhess, given a measurement of a modal damping, how
can we determine the modal damping of the structure without the support system.
We will show in the following analysis that we can determine the modal damping in
the structure if the support system makes a small change to the modes of the
structure, and we have the mode shape components at the support connections and
a damping model for the supports ystem. Let us now look at the complex eigenvalue
equation for a particular mode of the system.

y’[K+zcom(Ct +CS)-(UM2M]V=0, (13)

where we have pre-multiplied by the transpose of the real mode shape ~, which is
the real eigenvector resulting from the undamped eigenvalue problem. K is the total
stiffhess matrix, ~m is the measured fi-equency, i is ~-1, Ct is the darnping matrix for
the true structure, and Cs is that for the support system. We expand this equation
and assume that y?(Ct + Cs) ~ is an adequate measure of the darnping even though
v is the real mode shape from the undamped equation. The damping ratio is now
defined

.—
conventionally, -within the assumptions ab-eve, as

(14)



Expanding (14), and defining (15)

and taking the mode shape to be mass normalized, we have

Solving for Q, we fmd

This formula for the true damping ratio, as the frequency formula, is a fairly simple
expression. Given the measured modal damping, the measured modal frequency, the
mode shape components at the support dofs, and the damping matrix for the
supports dofs, the true damping ratio of the unsupported structure can be calculated.
Equation (16) can also be compared to (7) for the single dof case. Again, these
equations are very similar, and (16) reduces to (7) for the single dof case.

Equation (16) reveals some important features, just as (7) did. Because the quantity
in the brackets is the difference between unity and a positive ratio, the difference
between the true damping ratio and the measure damping ratio can be significant if
the last term in the brackets is not close to zero. As an example, a two dof system
was created with support darnping such that the rigid body mode has a 5.0 0/0

damping, true damping set to 0.5 ‘XO, and the ratio of the rigid body mode frequency
to the elastic mode frequency set at 1:2, This example produced a measured damping
ratio of 2.61 0/0,over five times the true damping.

‘cQmLmsm
In this paper we have examined the effects of support stiffness and damping on
measured modal frequencies and damping ratios. The single dof system revealed
interesting results which produced insight for more complex multi-dof systems. The
increase in the measured frequency of the supported system was related to the
square of the ratio of the frequencies of the rigid body mode and the elastic mode.
The damping was much more sensitive as the correction involved both the ratio of
frequencies and the ratio the clampings. Consequently, even for softly a supported
structure, the measured damping could be far from the true damping ratio.
Approximate formula were derived for the multi-dof case which showed the change
in modal frequency and modal damping for added support stiffness and damping.
These formulas were similar to the single dof formulas and reduce to them for the
single dof case. These formulas can be used to aid in the design of a support system
for modal testing of free or constrained structures.
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