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This paper deals with the analysis of the chattering phenomenon exhibited by
the one-degree-of-freedom system resulting from collision.

The objective of the authors is to investigate the state of rebound and contact

time when the mass element of the vibratory system comes into contact with the
collision surface. The collision surface is represented on paper, by the stiff
surface that comprises a spring and a damper.

The chattering phenomenon is characterized by some properties of the system
model, and moreover the considerations, for the analysis of collision systems by
the application of nonlinear equivalent equations for the stiff surface, as
indicated by the results of our experiments.

1. Introduction

The chattering phenomenon of a point of contact exhibits extremely
complicated vibrations resulting from collision. In fact, the point of contact

itself behaves like a nonlinear spring system, therefore a vibrating system
resulting from collision can be analyzed more accurately by simulating the point
of contact in terms of a multi-degree-of-freedom vibrating system considering
the coefficient of loss/damping and that of rebound as a fimction of velocity. In
this study, the point of contact is modeled as a one-degree-of-freedom vibrating
system composed of factors such as stiffness and damping coefficient. The



“equivalent stiff surface” whereby the rebound mechanism exhibits energy 10SS

as a result of collision was employed. Under these conditions, we report the
results of a test for determining the completion condition of chattering through
the behavior of two systems that interfere under arbitrary conditions.

2. Method for the computation of

system resulting from collision

In the case of a real spring system,
collision and the equation of motion is

the dynamic behavior

Hertz’s stiffness exists

of a vibrating

at the point of
described as a non-linear function with

respect to displacement. Thus it should be treated as a non-linear system. In

addition, to obtain the dynamic behavior of the vibrating system resulting from
collision, during a stepwise computation with a constant time step A ~, the

minute time step A ~should be corrected and the rebound velocity of
mass points should be considered because mass points of the spring
system collide with the stiff surface. According to the principle of
topological analysis, information regarding the displacement and
velocity of mass points can be obtained on the orbit of a topological
surface, which simplifies the study. Accordingly, we derived the
following stepwise equations required for computing the dynamic
behavior of the vibrating system resulting from collision.—

(1)

(2)

Using the above stepwise equations, the next state of Pk+l can be
calculated if the trajectory at any initial state of l% is given.

3. One-degree-of-freedom vibration system collides with a stiff solid

In this section, we describe a case in which the mass points of a
one-degree-of-freedom vibrating system collide with a stiff surface,
the rebound coefficient of which remains constant regardless of the
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Fig.1 Generalized model of one-

degree-of-freedom vibrating
system resulting from collision.

collision velocity.
The vibrating system resulting

from collision is shown in Fig. 1. The

equation of motion for the system is
qiven bv

x(r) ~24x(r)~x(r)=F (3)
where s is the stiffness of the spring
system, r is the damping coefficient, m
is the mass point mass, f is the external
force exerted on the mass point, the
damping ratio is <=r I(z&), the

undamped natural frequency is
Un= ~, the constant displacement is

F = f/s, and the non-dimensional time is
T = ont. In Fig. 1, koF is the pushing

distance.
Figure 2 shows the dynamic behavior

and the topological orbit of the system obtained by a computation, where the
rebound coefficient of the stiff surface is set as 0.6, wn = 0.25, F =1, koF=O.75, and
the time step for stepwise computation A t = 0.01.
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Fig.2 (a) Phase-plane trajecto~; one-degree-of-freedom vibrating
system resulting from collision.
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Fig.2 (b) Time response curve ; one-degree-of-freedom vibrating

system resulting from collision.

3-1. One-degree-of-freedom vibrating system collides with an equivalent

stiff surface
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Fig.3 Generalized model of one-

degree-of-freedom vibrating system

As shown in Fig.3, we consider a
fixed plan model having stiffness s’
and damping coefficient r’ in which
the stiff surface determines the
rebound. We call this stiff surface an

“equivalent stiff surface”. If we
assume that Y represents the constant
displacement at the time of coupling of
the spring system and the equivalent
stiff surface, the equation of motion
for a coupled vibrating system is
represented as

X(T)+ 2a&T)+ @(r)= yF’ (4)

where ~ =l+(r’h-),
B=1+(s’/s),

Y‘{l+ko (S’/S)}/~.

and equivalent stiff surface.



3-2. Chattering completion condition on linear equivalent stiff surface
A mass point that collides with an equivalent stiff surface at an arbitrary

velocity remains in the region where {x(t)-koF) until it is pushed back by the
equivalent stiff surface. The mass point of the vibrating system sinks into the

collision surface as a result of a minute displacement. This means that the
surface is elastic in terms of rebound mechanism and yet rigid enough not to ‘
cause plastic deformation.

We can locate a boundmy point at which rebound of the mass point ceases and
transition to coupled vibration begins, through an investigation of the contact
time and rebound coefficient on the equivalent stiff surface. The presence of
the boundary point is the condition for the completion of chattering for a contact
point. We call this collision velocity w “critical velocity” and it is given as a
fi.mction of the damping ratio c . The computation curve in Figure 4 shows the

critical velocity when ko=O. The critical velocity with any ko is given by

enlarging the curve for ko by (1-ko) fold. ——
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Fig.4 Boundary diagram of contact time and critical velocity for

damping ratio.

3-3. Collision velocity, rebound coefficient and contact time
The contact time r ‘n becomes infimity at the end of chattering. This is

shown in Fig.4 as the upper limit curve of T ‘n. When the collision surface is
placed at the free equilibrium point of ko=l, the rebound coefficient eo and

contact time are given by



(5)

(6)

which indicates that the collision velocity has no effect on them. As a result,
T ‘n can exist in the hatched area in Fig.4.

As an example, Fig.5(a) shows the relationship between the collision velocity
and rebound coefficient, Fig.5(b) shows the relationship between the collision
velocity and contact time when darnping ratio is fixed at c = 0.05 and parameter
ko lies between 0.5 and 1.0, Fig.5(c) shows the relationship between rebound
coefficient and contact time when tmmrneter L ‘ lies between 0.02 and 0.2.
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(a) The rebound coefficient versus collision
in case of linear equivalent stiff surface.
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Fig.5 (b) Contact time versus collision velocity
in case of linear equivalent stiff surface.
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4. Chattering completion condition on a nonlinear equivalent stiff surface
The measured rebound coefficients of metals such as copper and brass

generally average 0.85 and tend to decrease as the collision velocity increases.
The contact time tends to decrease as the collision velocity increases and
gradually levels off at a certain value. This tendency is generally considered to

be “a result of the
time of collision”.

higher order of vibration which occurs simultaneously.—-——.
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Fig.6 (a) The rebound coefficient versus collision velocity
in case of nonlinear equivalent stiff surface.
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Fig.6 (b) Contact time versus collision velocity

at the

in case of nonlinear equivalent stiff surface.



Figure 6 shows two characteristics curves for a case in which the damping
ratio C’ on the equivalent stiff surface is a nonlinear function of the velocity,

the damping ratio c ‘ of the spring system is fixed at c ‘=0.05, and parameter
ko is given by 0.5>ko> 1.0.

5. Conclusion

In this report, we simulated the chattering phenomenon which is induced by
the collision of mass points with a stiff surface by introducing the equivalent stiff
surface. The mass points are components of the one-degree-of-freedom

vibration system that were subjected to a stepwise external force. The

simulation revealed the characteristics of the rebound mechanism; and the
condition for the completion of chattering was obtained.

We conclude the following results of this study.
(1) The rebound coefficient can be determined by the pushing distance, damping

ratio of equivalent stiff surface, and damping coefficient.
(2) The contact time can be determined by the pushing distance, damping ratio

of equivalent stiff surface, damping coefficient and collision velocity.
(3) A non-linear vibrating system resulting from collision must be used to

construct an appropriate computational model with respect to the actual
vibrating system resulting from collision.

Further studies should be carried out to analyze multi-degree-of-freedom
vibrating systems resulting from collision that induce a higher order of vibratory
behavior using anew numerical model.


