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ABSTRACT

Exhaust noise from an electrical power plant is generated owing to high pressure inside the
boiler when the gas is suddenly exhausted through a safety valve. To reduce the noise, an
expansion chamber with a perforated diilhser is used. Noise generation propagation and
radiation horn the exhaust gas system are numerically simulated to investigate the noise
generation mechanism and to design the efficient perforated diilbser. The high-order compact
schemes which were optimizd in the wavenumber domain for high-resolution characteristics
are used in this numerical simulation. The OHOC schemes are non-dissipative and much less
dispersive than the other low-order standard schemes, and well adapted to computational
aeroacoustic (CAA) problems. The OHOC schemes are coupled with the artificial dissipation
terms and the fourth-order low dissipation and dispersion Runge-Kutta (LDDRK) time-
marching method for solving nonlinear unsteady Euler equations accurately. The characteristics-
based boundary conditions are implemented as physical boundary conditions for the OHOC “
schemes. It is shown that the application of these schemes to simulation of the exhaust gas noise
reduction system presents time accurate results with partially oscillating supersonic flows near
the perforated diflber and the reduced acoustic pressure fields through the expansion chamber.

L INTRODUCTION

The optimized high-order compact (OHOC) schemes proposed by
properly formulated to achieve maximum spatial resolution that they

Kim and Lee [1-3] are
are less dissipative and

dispersive than the other low-order standard schemes. It has been generally recognized that the
high-order low dispersion and dissipation schemes are less suitable for the computation of
nonlinear wave solutions with high dkcontinuity. It was found that the nonlinear wave
steepening process, when viewed in the wavenumber domaiq corresponded to an energy
cascade process whereby low wavenumber components are transferred to high wavenumber
range [4]. When shocks are form~ it is known these schemes generally produce spurious
spatial oscillations sround them and in regions with steep gradients. These spurious oscillations
are waves from the unresolved high wavenumber range generated by the nonlinear wave
cascadhg process. Currently, there are many well-established shock-capturing schemes in the



literature [5-10]. Most shock-capturing schemes are generally low-order upwind ones with
substantial built-in artificial dissipatio~ and they are not designed or suitable for computations
of long distance wave propagation. The OHOC schemes are so low dissipative; that is, they
have no built-in artificial dissipation. To be applicable to the nonlinear wave problems, they
require an effective artificial dissipation algorithm to damp out the spurious oscillations [11,12].

An efficient high-order low dissipation and dispersion time advancing method is needed to
produce time-accurate solutions of long distance linear or nonlinear wave propagation with
correct wave speeds and proilles. The OHOC schemes in space are low dispersive and
dissipative to provide high-resolution characteristics, thus it is recommended to use such a time
advancing method for space-time consistency. The Runge-Kutta schemes were optimized to
achieve minimhd dissipation and dispersion errors for the propagating waves, rather than to
obtain the maximum formal order of accuracy and these are referred to as low dissipation and
dispersion Runge-Kutta (LDDRK) method [14]. The fourth-order LDDRK scheme with two
steps of four-six alternating stages is so efficient that it can use two times larger time step
spacing than the classical fourth-order Runge-Kutta scheme within an accuracy limit.

Correct and physical boundary conditions should be imposed to yield high-quality wave
solutions. Recently, several suggestions for the physical boundary conditions have been
proposed for the unsteady aeroacoustic computations. These proposals can be classified in three
categories, i.e., (1) quasi one-dimensional characteristics, (2) decomposition of the solution into
Fourier modes, and (3) asymptotic analysis of the governing equations for large distances
[13,15-17]. The high-order compact schemes are sensitive to boundary values in the evaluation
of the first derivatives, so the quality of solutions even on the interior nodes depend on the
accuracy of the boundary conditions. In this reaso% the correct and physical boundary
conditions are important for the actual applications of the OHOC schemes.

The conservative forms of Euler equations are solved by these numerical algorithms. The
whole flow and acoustic fields produced by high pressure and temperature gas flow in and out
of a pefiorated d.iffbserwith an expansion chamber are simulated in axisymmetric coordinates.
Gas noise induced by vibration of strong shocks and instability of inviscid supersonic jets near
perforated diilhser is computed in fw field region located in the expansion chamber. It seems
that the numerical analysis of the gas noise sources near the perforated diflhser and the resulting
far-field noise can guide to a better noise reduction method and a solution of industrial gas noise
problem.

IL GOVERNING EQUATIONS

The linear and nonlinear waves are computed from the Euler equations. The conservative
forms of one-, two-dimensional and axisymmetric Euler equations in the Cartesian coordinates
are considered in this paper.
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The axisymrnetric and two-dimensional equations are formulated in cases of cz= 1 and a = O
respectively. The spatial derivative terms in Eq. (2. 1) are evaluated by the OHOC schemes. For
the nonlinear wave computations, the artificial dissipation terms[2, 11,12] can be added in the
right hand side of Eq. (2. 1) as a treatment of the nonlinearity. Time advancing method is the
fourth-order low dissipation and dispersion Runge-Kutta (LDDRK) scheme that has two steps
of four-six alternating stages [3,14].

m NUMERICAL ALGoRrrEMs

HI-1. OHOC Schemes on Interior Nodes

The main schemes presented here are generalizations of Pade’ scheme of seven-point stencil
as shown below [1,19] :

(3.1)

This is the central diflkrence formulation for computations on interior nodes. Only the eighth-
order tridiagonai (/3= O) scheme and the tenth-order pmtadagonal @# O) scheme have unique
values of the coediicients a,b,c, a and l?, and these are the highest-order ones. The other lower-
order schemes should have the coefficients that are not determined completely until more
constraints are imposed and these would be able to improve the resolution characteristics. The
analytic and systematic constraints for determination of the free coefficients are considered. The
nature of these constraints is to minimize the dispersive (phase) errors in the wavenurnber
domain by using Fourier analysis. Kim and Lee [1] proposed the analytic optimization methods
to achieve the OHOC schemes and showed that the optimized sixth-order tridiagonal (OSOT)
and fourth-order pentadiagonal (OFOP) scheme are more effkctive than that of any other
compact scheme. The coefficients of the OSOT and OFOP scheme are presented in Ref 1 and
these provide the high-order accuracy and the maximum resolution for the central compact
schemes. The maximum resolution characteristics of the OHOC schemes are compared with
those of other standard central schemes in Fig. 1.
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HI-2. OHOC Schemes on Near-Boundary Nodes

The optimized near-boundruy compact schemes are considered for accurate computations in
domain with non-periodic boundaries. The schemes on interior nodes use seven-point stencil,
thus three kinds of near-boundtuy schemes are required on three nodes (i = O, 1 and 2) from the
boundary (i= O).The near-boundary compact diilbrences are formulated as follows [3,19] :
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where, all the fi’s should be equal to zero for the tridiagonal schemes. These fonmdations are,
of necessity, non-central differences and their error characteristicsare both dispersive and
dissipative. The two kinds of errors can be analyzed simultaneously in the wavenumber domain
by the Fourier analysis. The dispersive and the dissipative errors of the near-boundary compact
schemes were minimhd by the analytic optimization methods proposed by Kim and Lee [3].
The coefficients cq‘s, fi’s and aj’s of the optimized near-boundary compact schemes are
presented in Ref 3 and these provide the high accumcy and the maximum resolution for the
near-boundary compact schemes. The maximum resolution characteristics of the optimized
near-boundary compact schemes are presented in Fig. 2.

(a) Wavenumber

Fig. 2 Maximumresolutioncbwteristics of
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The problem considered here includes nonlinear waves with discontinuities. Such nonlinear



waves can cause serious numerical instabilities and errors that result in spurious numerical
oscillations when the numerical algorithms are not suited to the nonlinearity. Therefore it is
necessary to eliminate the spurious numerical wave components in the narrow band of high
wavenumber range, while at the same time keeping the wave components in the wide band of
low wavenumber range uru@ected. This can be achieved by inwrting artificial dissipation terms
in the finite difference equations [11,12]. They can be easily combmed with the OHOC schemes
explicitly. The artificial dissipation terms are used as a treatment of nonlinearity for the OHOC
schemes in thiS pilp4X.

III-4. Low Dissipation and Dupersion Time Advancing

The OHOC schemes are non-dissipative and low dispersive to provide high-resolution
characteristics in space for a given stencil. Thus, the time advancing method for them should be
also an efficient high-order less dissipation and dispersion scheme than the other standard ones.
The Runge-Kutta method were optimized to be a low dissipation and dispersion time advancing
method for various truncation orders in Ref [14] and it is referred as LDDRK method. The
fourth-order LDDRK method which is used in this paper for the OHOC schemes includes two
steps of four-six alternating stages and it is more efficient than the classical fourth-order Runge-
Kutta method with four stages. When two steps are combmed in the optimizatio~ the
dissipation and dispersion errors can be further reduced and the high-order accuracy can be
maintained.

III-5. Physical Boundary Conditions

For the present worlq Thompson’s characteristics-based boundary conditions are used as the
physical boundary conditions for the multi-dimensional computation [16]. He decomposed the
Euler equations into wave modes of definite velocity and then specified boundary conditions for
the incoming waves. The amplitudes of the outward propagating waves are defined entirely
from the variables tilde the computational dorna@ while those of the inward propagating
waves are specitled as the boundary conditions. One important drawback in the characteristics-
based boundary conditions is that there are no true characteristics in two- or three-dimensional
problems. As an approximation one may ignore the muki-dimensionality of a problem at a
boundary, and treat the problem as if the problem is locally one-dimensional with the direction
normal to the boundary. For the radiation or outflow boundary conditions, this approximation
has been found to lead to significant non-physical reflections when the incident angles of waves
are oblique to the boundary and also when there is a strong mean flow tangent to the boundary
[20].

IV. NUMERICAL COMPUTATIONS

In this paper, the flow and acoustic fields produced by high pressure and temperature gas
flow in and out of a perforated diffbser with an expansion chamber are siiulated numerically.
The conservative forms of Euler equations in axisymmetric coordinates are solved with initial
conditions imposed in the inlet region of the difber. The initial inlet and ambknt value are
imposed in the ratio of 1.44:1 for pressure, 1.65:1 for density and the Mach number of the inlet
flow is 1.0. Steam is considered as the gas and its specific heat ratio is 1.3. These initial
conditions come out when a safety valve of steam boiler used for electrical power plant is open
and the steam flow arrives at the inlet region of difibser silencer. The safety valve get open only



if pressure inside the boiler is greater than 100 times of ambient pressure, so the steam flow
through the perforated dffiser and expansion chamber is of high pressure, temperature and
speed.

Grid system for the present computations is shown in Fig. 3. Many grids are clustered inside
the diffbser and near the holes where large fluctuation of flow exists. There are three hole strips
around the diflkser and total srea of the hole strips and cross section area of the inlet pipe are in
the ratio of 2.85:1. A snap shot of pressure field (pressure contours) is presented in Fig. 4 as a
result of computations. It is shown that there are oscillating shocks tilde the difi!bser and
shedding vortices through the hole strips due to supersonic jets, which result in the major noise
sources in this system. Far-field acoustic signals are obtained at four locations outside the
expansion chamber as pointed by alphabet ~ b, c and d in Fig. 3. Plots of the obtained acoustic
signals and the measured noise levels are presented in Fig. 5.

Fig. 3Grid systcmof @orated diflhserand expansionchamberfor numericalcomputation

Fig.4Pressurefieldinducedby steamgas flowthroughperforateddiffwer
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