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Recent results associated with simultaneous assignment of poles and zeros
by state feedback control are presented. It is shown that the poles and some
zeros of a vibratory system may be assigned by choosing the position vector
and the control force. This objective is achieved with partial knowledge
modal date associated with the eigenpairs which are intended to be changed.
An example demonstrating the results is given.

1. Introduction: We summarise in this paper the main results obtained in
[1]. The system under consideration is modelled by the matrix differential
equation

Mx+Kx=o (1)

with positive definite symmetric mass ,M = $Jtnxn,and stiffhess, K ~ C&n’n’
matrices. Separation of variables,

x(t) = $est, (2)

~ a constant vector, leads to the problem of determining the eigenvalues and
the eigenvectors of the open-loop linear pencil

PO(L) =K-LM, k=-S2 (3)



The pencil (3) has n real positive eigenvalues ki satisfying

associated with the 2n

Denote by M and K
and column of M and
harmonic excitation

P~(2Lj)+i‘O (4)

imaginary poles Si.

the sub-submatrices obtained by deleting the last row
K, respectively. Then if the system is excited by the

f(t) = e. sinmt, (5)

en the n-th unit vector, then the response has a particular solution of the

form

det(K -co*M) ~inot
Xn(o,t)=

det(K -co *M) “
(6)

Let vi , i=l,2,..., n-1 be the eigenvalues of K – @*M. Then (6) gives the
following amplitudes of vibration

[

o, 2when 6.) ‘vi; i=l,2,...,l–l

+ w, when 032 ‘ki; i=l,2,...,n “
(7)

The imaginary values ~– p i are called the zeros of x~(w,t). The motivation

to assign some poles and zeros of the system thus follows from (7).
Assigning the poles appropriately ensures that the overall response of the
system is of small amplitude of vibrations. By assigning the zeros certain
amplitudes of vibrations may be eliminated.

The assignment of poles and zeros may be achieved by applying a control
force bu(t), where b is a constant vector and u(i) is the control finction. The
dynamics of the controlled system is thus governed by

Mv + Kv = bu(t) . (8)

If the control fimction is chosen to satisfi



u(t) = aTv(t),

a a constant vector, then the system is said
feedback, since the output state vector v(t) is

(9)

to be controlled by state

returned to the input. The

(11)

equations of motion (9) maybe written in the form

Mv+(K–baT)v=o. (lo)

Denote the stiffness matrix of the closed loop system by

Kc= K–baT.

Then, separation of variable

v(t) = $ sin~t (12)

leads to the problem of evaluating the eigenpairs of the closed loop pencil

Pc(h)=Kc–kM, A=(02. (13)

If the controlled system is excited by the harmonic force (5) then the
vibrations are governed by

lVIW + KCW = e, sinwt (14)

and the frequency response function y~(m) of the closed loop pencil is now

(
–1

Y. )=e~ KC– W2M en. (26)

Let K ~ be the submatrix obtained by deleting the last row and column of

&. Then by the Cramer’s rule we have

det(kc -w 2M)
YFs@) =

det(Kc -m 2M)”
(27)



Denote the eigenvalues of Kc – LM by ~i , i=l ,2,...,n, and the eigenvalues

of KC–~fibyOi, i=12, ,...,n- 1. Since in general & is not symmetric the

closed loop system (21 ) has poles *K and zeros ~~~ which are

generally complex numbers. To avoid instability, which may occur in
actively controlled system, we must assure that the poles of the system
not lie in the right hand side of the complex plane.

an
do

2. PROBLEM DEFINITION. Suppose M, K and a set of n positive real
numbers, ~,e 1,62,...,6~.1 are given. The problem under consideration is to
obtain the vectors a and b such that

det(Kc– LM)=O, for ~=~,~z,~~,...,,., (30)

and

det(KC– LM)=O, for l= O1,Oz,...,el.l. (31)

3. THE ALGORITHM. The following algorithm summarises the main
results obtained in [1].

Input: Kc 91”’”,M ● %nxn,two positive definite symmetric matrices;
and a set of n positive numbers ~,01,02,...,6~-1.

Algorithm:

(a) Determine the eigendecomposition

where

m=[w$zldhl~
and partition



(b) Obtain

and partition

()iia =
an “

(c) Solve the eigenvalue problem (k - ~ifi)~i = o

and find

~i,~ij for i=l,2,...,l-l. Denote

y=[yJJwJ..lqJnl.

(d) For k=l,2,...,l-l calculate

1 ek-pkn-%i-pk
rk = AT rI

a ~k ~k i=l pi – ~k
i+k

and define

(
T)r= r19r2,..., r~_1 .

(e) Determine

(f) Obtain

and define

6=–KYr.

b. = ~(1-iiTb)
an

b=
()

b

b~ “

Output: Two vectors a ● %“and b= %“.

The closed loop pencil (K – baT ) – kM has eigenvalues
~,k2,k3,.. .,kn, where ?L2,L3,...,kn are eigenvalues of the open loop

pencil K-AM. The (n-l) x(n-l) subpencil

(K –b~T) – ?&I has eigenvalues 01,02,..., e~_1.



4. AN EXAMPLE. An harmonic force

f(t) = 1.5sint + 2.2 sin2.04t + 1.7sin3t

is applied on the mass-spring system shown in Figure 1(a). The forced
vibration of the system are governed by the differential equation

Mv + Kv = e4f (t)

where

M = diag{l 2 2 1}

11
3 -2 0 0

–25-30
K=

o -3 7–4’

00-44

and e4=(0 O 01 )T. Suppose that the initial conditions are given by

v(o) = v(o)= o.

The response of the system consists of two components

V=g+p

where g is the general solution of

Mg+Kg=o

and p is a particular solution of

Mp + Kp = df (t) .

Solving these equations gives the vibration response of the mass rnz

v4=g4+P4

where



p4 = 0.2143 sin t + 45.2724 sin2.04t – 0.4939 sin 3t

and

ga = 2.1215 sin0.3366t + 0.1505 sinl.3599t

–45.1812 sin2.0412t + 0.0835 sin2.6212t”

The large amplitude of vibration is due to the forced excitation near the
resonance frequency 2.0412.

We wish to assign the zeros of the control system shown in Figure

1(b) to the exciting frequencies, ie. 01 = 1, e z = (2.04)2= 4.1616 and

6 ~ =9. To avoid near-resonance-excitation it is also required to shift the

eigenvalue As=z1.1667. We choose to shift Ls to the value ~=25. To avoid
spill-over, the other eigenvalues required to remain unchanged. The problem
under consideration is to obtain the coefficients ai of the control function

4
U(t) = aTw = ~CZiWi

i=l

and the gains bi at the various masses such that the above design objectives
are met. Following the algorithm of section 3 we obtain

a = (–16.8017 19.6025 0.6213 –7.4545)T

b = (0.0804 -0.3820 -0.2125

The state feedback control applied
therefore

2.1023)T

on the system

( 0“0804)

of Figure 1(b) is

-0.3820
bu(t) =

-0.2125
u(t)

[ 2.1023)



where

u(t) = –16.8017w1 + 19.6025wZ + 0.6213w3 – 7.4545w4 .

With this control the response of m4 is given

W4 = –0.0914 sin5t + 1.0952sin O.3366t

+0.0454 sin 1.3599t + 0.0101 sin2.6212t’

A significant reduction in the amplitude of vibration has been achieved by
using the pole-zero assignment technique.
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