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ABSTRACT

Piezoelectric transducers are frequently used as acoustic sensors and projectors as well as in
active methods of vibration control. Their proper utilisation requires a good understanding of
their non-linear properties and of the dielectric, mechanical and piezoelectric losses in the
material. Besides, new computer codes are being developed for the modelling of piezoelectric
materials and transducers and these are precise enough to require accurate material constants.
The complex impedance of piezoelectric resonators of different geometries can be analysed
around their resonances to determine the dielectric, elastic and piezoelectric coefficients as
complex constants to take account of all the losses in these materials The impedance curves
may be measured as a finction of applied dc voltage in order to determine the field
dependence of the material constants. By analysing the fundamental and higher resonances,
the dispersion in the material constants can be studied and the real and imagina~ parts of the
constants may be described by frequency dependent polynomials. A new equivalent circuit for
the material takes account of all the losses.

INTRODUCTION

Piezoelectric and electrostrictive materials are important constituents of
electromechanical sensors, actuators and smart structures. Piezoelectric materials produce a
strain, S, under the influence of an external electric field, E, or become electrically polarised
under the influence of an external stress, T. The property of piezoelectricity is closely related
to the phenomenon of ferroelectricity, which describes the spontaneous polarisation in a



crystal that can be changed between two or more distinct directions with respect to the crystal
axes through the application of an external electric field. This ability of ferroelectric materials
to switch polarisation under an external electric field from a random orientation to a preferred
direction is used in a variety of polycrystalline ferroelectric materials (ceramics and polymers)
to produce a polycrystalline piezoelectric material with a net preferred polarisation direction
This process is described by the term “poling”. Prior to poling, individual domains of the
ceramic are piezoelectric but the random orientations counteract each other and the net effect
is that the macroscopic material shows little or no piezoelectricity. The partial alignment of
the domains during poling creates a net spontaneous polarisation in the poling direction and

the material shows a Cm symmetry around that direction.

Piezoelectricity can be mathematically described by a phenomenological model derived
from thermodynamic potentials. The derivations are not unique and the set of equations
describing the direct and converse piezoelectric effect depend on the choice of potential and
the independent variables used1>2. For example, one such set of linear constitutive relations is:

S, =s~Tq +dP~E~

(1)

D. = E~En +dP~TP

where D is the electric displacement, s is the elastic compliance, d is a piezoelectric constant

and ~ is the dielectric permittivity. The superscripts of the constants designate the
independent variable that is held constant when defining the material coefficient and the
subscripts define tensor directions which take into account the anisotropic nature of the
material. The elements of the tensor form a 9x9 matrix with 1,2,3 designating the
orthonormal directions (3 is the poling direction) and 4,5,6 designating the shear directions.
For the commonly used polycrystalline piezoelectric ceramic materials with Cm symmetry,
such as lead zirconate titanate or PZT, there are ten non-zero, independent matrix elements
consisting of 5 independent elastic constants, 3 independent piezoelectric constants and 2
independent dielectric constants. For these materials, the reduced matrix form of the above
constitutive relationships can now be written as:
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While the linear constitutive relations can be written in ways other than shown in ( 1), there are
only 10 independent constants and the IEEE Standard on Piezoelectricity3 contains the



appropriate equations that allow one to convert from one set of equations/matrix to another.
Ideally, under small fields and stresses and for materials with low losses within a limited
frequency range, these 10 constants contain all the information required to predict the
behaviour of the material when a stress, strain or electric field is applied to it In practice
most materials display dispersion and non-linearities, have measurable losses and their
properties are temperature dependent. Moreover, the properties can have a time dependence
due to aging effects.

The most general way to take account of the dielectric, mechanical and piezoelectric losses in
a material is to express the 10 material constants as complex coefficients. This paper reviews
the experimental methods for determining these complex material constants for any
piezoelectric material and the effects of dispersion on these constants, and it discusses the use
of an appropriate equivalent circuit for the material to include all types of losses. A second
paper4 reviews the experimental methods to study the non-linear dependence of the material
constants on applied signals as well as the response time of the materials

RESONANCE METHODS FOR DETERMININGG THE COMPLEX MATERIAL
CONSTANTS

The most widely used technique for determining the material constants for
piezoelectric materials is the resonance technique as outlined in the IEEE Standard on
Piezoelectricity3. A piezoelectric sample of specific geometry is excited with an AC signal
and an impedance anal yser is used to determine the complex impedance and admittance as a
function of frequency. Typical spectra are shown in Figure 1 and it can be seen that the
spectra contain resonances that result from ultrasonic standing waves in the material. Several
particular frequencies may be defined from the spectra: the parallel resonance frequency~P is
the frequency at which the resistance R is a maximum; the sideband frequencies ~+uz and j-m
correspond to the maximum and the minimum in the reactance X, The series resonance
frequency X is the frequency at which the conductance G is a maximum; and, the sideband
frequencies j+llz, andJ1/z, correspond to maximum and the minimum of the susceptance B.

The five most common modes used for piezoelectric ceramic analysis are shown in
Figure 2 along with the recommended geometrical aspect ratios for samples used to
determine each mode. The arrow marked on each sample indicates the poling direction for
the piezoelectric ceramics, The aspect ratios ensure that the sample is excited in a mode
where the one-dimensional approximation is valid and that coupling between the modes is
negligible. In some materials (typically low mechanical Q materials) these aspect ratios may
be relaxed whereas in other materials (high Q and high electromechanical coupling) they
may need to more stringent.

The impedance equations that govern the various resonance spectra have been derived
from the phenomenological theory of piezoelectricity S>Gfor the case of real material constants
assuming lossless materials. These equations express the impedance as a fi.mction of the
appropriate material constants and of the particular frequencies defined above. Holiand7
showed that the losses in a piezoelectric material may be taken into account by representing
the material constants as complex coefllcients. Sherrit8 has re-derived the expressions for the
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Fimue 1. The impedance and admittance spectra for the radial mode of a Motorola 3203
HI) PZT disk sample.
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impedance for the various resonance geometries using complex material constants so as to
include the dielectric, mechanical and piezoelectric losses in the material.

The IEEE Standard on Piezoelectricity uses the impedance equations for lossless
resonators and the critical frequencies derived fi-om the equations to determine the real parts
of the material constants. Numerous techni ues have been proposed to measure the material

1
constants as complex coefflcients9’10’*1’12>13>1>*5. Basically, the expression for the impedance
is compared with the experimental curve around resonance and the material constants are
found so as to obtain the best fit.

As an example, Figure 3 shows
the impedance plots for the thickness
extensional resonance for Motorola
PZT 3203 HD ceramic. For this case
the linear piezoelectric equations are

(3)

E 33

where h is the piezoelectric constant
and c is the elastic stiffness.
Considering the material constants to
be complex, these equations can be
used to derive the expression for the
impedance for ~he thickness
extensional resonance:
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where the electromechanical coupling
constant kt and the parallel resonance
frequency fP are given by
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Figure 3. The resistance and reactance data of the
thickness extensional resonance and the fit to the
first and second resonance peaks for Motorola 3203
HI) PZT ceramic. The resistance 1s plotted on a
logarithmic scale

The material constants around the fundamental resonance can be found by fitting expression
(4) to the resonance curves shown in Figure 3 This is done by using Smits’ method12 which
uses impedance values at three frequencies of which one is chosen near the frequency at
which the resistance is a maximum and the other two are chosen to be above and below the
resonance. Two of the points plus an initial guess for the elastic constant, using a



relationship between the mechanical Q and the resonance bandwidth described by Land et
allG, are used to calculate electromechanical coupling constant and the permittivity. Using
the coupling constant and a third point, a new elastic constant is calculated and the process is
repeated until convergence. A disadvantage of Smits’ technique is that impedance values can
vary by several orders of magnitude around resonance and so care must be taken that the
measuring instrument is not overloaded and that the impedance values are carefidly
determined. The values of the material constants will depend to some extent on the points
chosen to analyse the spectrum but this dependence can be corrected by repeating the
analysis with a different choice of points followed by an averaging of the results Alemany
et al15 have looked at procedures to obtain convergence during iterations. A non-iterative
technique to determine the material constants has been presented by Sherrit et a113. This
technique requires frequency data around resonance and impedance data away from
resonance. Although the disadvantage associated with Smits’ method is removed, this
method is less accurate when dispersion in the material constants is significant. Smits’
technique can be used to find the material constants that determine the thickness, thickness
shear, length and length thickness modes of resonance. The complex material constants for
the radial extensional resonance can be found using a method put forward by Sherrit et a114.
A commercial software is now available for carrying out the analysis of the resonance
curves 17. By analysing all the different modes of resonance the complete set of material
constants can be determined around the resonance considered. An example of such a
determination for the Motorola 3203 HD PZT ceramic is shown in Table 118.

DISPERSION

The effects of dispersion can be studied by determining the material constants at the
fimdamental frequency of resonance and at higher resonances. Figure 3 shows that the fit
obtained by using the material constants around the fimdamental frequency does not agree
well with the impedance curve around the second resonance and vice versa. This method has
been used to study dispersion in the Motorola 3203 HD ceramic by Sherrit et a118. Thus, the
material constants can be determined for frequencies required by the applications engineer as
long as a reasonable resonance curve can be experimentally determined near the required
frequencies. In some cases it is possible to express the real and imaginary parts of the
material constant as a polynomial in frequency, as shown by Sherrit et al for piezoelectric
polyvinylidene difluoride – tetrafluoroethylene (PVDF-TrFE) copolymer19; the applications
engineer can use the polynomials to find the material constants at a desired frequency,

EQUIVALENT CIRCUIT

In designing devices it is sometimes usefil to have an equivalent electrical circuit to
represent the material. Currently the most widely used equivalent circuit to represent a
piezoelectric vibrator in the thickness mode is the Van Dyke circuit, which is shown in
Figure 4(a). This circuit uses four real circuit parameters, CO, Cl, L1 and RI to represent the
impedance of a free-standing piezoelectric resonator around resonance. However the



Table 1: The reduced matrix of Motorola 3203HD PZT including the
electromechanical couplingdeterminedat the fundamentalresonanceof each mode

Material
Constant

s: (m’/N) XIO-”

s{ (m’/N) XIO-”

S: (m’/N) XIO-”

s: (m’/N) XIO-”

s: (m’/N) XIO-”

S; (m’/N) xlO-’1

s~, (m’/N) XIO-”

s: (m’/N) xl O-”

s:, (m’/N) XIO-”

c?, (N/m’) x1O”

d,~ (C/N) X10-12
d,, (C/N) X10-12
d,, (C/N) x10-*2
d,, (C/N) xlo-’”
d,5 (C/N) X10-’2

E~l (F/m) X10-8

~~, (F/m) X10-8

E;, (F/m) X10-8

E;, (F/m) X10-8

E;, (F/m) X10-8
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LTE

Average

Calculated

Calculated
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TS
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Average
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-l%

-rS

RAD
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Average

TE
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LTE

rs

LAD

rE

Frequency

(kHz)
71.5

150.9

150.9

Smits’ formula

Matrix
inversion

199

2730

IEEE formula

6390

71.5

150.9

199

2730

2730

150.9

71.5

6390

199

71.5

2730

150.9

6390

Value

Real
1.56

1.55

1.56

-0,420

-0.821

-0.825

1.89

3.92

3.96

1.77

-297

-293

-295

564

560

2.14

3.06

2.83

2.95

1.06

0.763

0,447

0.611

0.706

0.536

Imag
-0.030

-0.032

-0.031

0.012

0.034

0.017

-0.034

-0.13

-0.086

0.023

9.7

10

9.9

-15

-30

-0.13

-0.11

-0.061

-0083

-0.053

-0.0029

-0.0054

-0.0034

-0.0062

-0.0050

0/0

Standard
Deviation
Real
0.63

0.45

3.90

NIA

NIA

1.0

2.9

NIA

2.0

0.70

0.68

3.1

4.6

0.44

1.1

1.9

2.0

0.52

0.90

3.1

).45

).46

[mag
5.2

2.8

4.9

NIA

NIA

0.78

4.3

N/A

11

71

5.8

17

11

6.8

6.5

9.4

4.2

45

16

37

6.1

12



impedance, expressed by equation (4), contains six material constants (the real and imaginary
parts of the permittivity, the coupling constant and the elastic stiffness) and therefore six
parameters are needed to describe the impedance when losses are significant

We have proposed an alternative
circuit model based on the Iossless
resonator model suggested by
Butterworth20 and Cady2’ and shown in
Figure 4(b). The model contains three
circuit elements CO, Cl and L1 and we
modify the model by assuming that each
of these circuit elements be considered
to be complex. The circuit now has six
parameters and some unique features
that make it an ideal model for
representing the electrical characteristics
of an unloaded piezoelectric resonator.
We have shown22 how the values of the
complex circuit elements can be
calculated from the complex material
constants and vice versa and that spectra
obtained by using the complex circuit
model give very good agreement with
corresponding experimental spectra for
high Q as well as low Q materials.
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Figure 4. (a) The Van Dyke circuit model; the
values of the circuit elements are real. (b) The
proposed circuit model; the values of the circuit
constants are all complex.
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