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New nonlinear theory of sound in unsteady subsonic flow has been proposed. This two-
medium theory is based on the nonlocal invariant procedure of separating out the acoustic
components in high-unsteady flow, and so it departs radically from all the traditional
approaches. A nonlocal mathematical model of globally-compressible fluid flow has been also
designed for the simulation of unsteady subsonic flows with acoustics excluded. This model,
which represents a fundamental extension of the classical model of incompressible fluid flow,
forms a necessary basis of the above theory while being applied for the approximation of
unsteady mean flow and in turn for the estimation of sound sources.

1. INTRODUCTION

To begin a brief review, let us recall “the most general linear equations of flow acoustics”
proposed in [1]. There was assumed that 1 >> o~ I'(t is the characteristic time of changes in
" the mean flow structure, o is the sound frequency). Any procedure of time-averaging depends
on the interval (¢, f,), and, as usual, it is taken so large that all the mean flow variables are
independent of time. Thus, the approximate linear system has been derived with the aim to
describe the evolution of small unsteady fluctuations Z . (r, f) on the background of steady
mean flow with variables Z , (r) which represent the exact stationary solution of the basic
nonlinear equations of fluid mechanics without any sources and forces (here Z = {u, p, p, s}).
Surely, the mean flow is regarded as steady only in the unique reference frame, and any
Galilean transformation will destroy the model (this defect is peculiar to any linearization).
Such fluctuations describe simultaneously all kinds of waves: the sound as well as the
disturbances of both entropy and vorticity, but this cannot be recognized as an advantage. So,
any time-averaging procedure, formally applied to the basic evolutionary equations, is not able
to give a way how to separate out the acoustic waves, except the case of uniform flow.

The absence of distributed mass and heat sources as well as of any body forces is a serious
limitation of the above model. Otherwise, one ought to give an exact procedure, and this is far
from trivial, how to define both the main part of any source and the fluctuating additive. This
problem was considered later by Goldstein, but the approach he suggested in sec.1.2 of [2] (all
the source terms, being assumed small, are to be attributed to the sound field, and Z , (r)
represents the stationary solution of basic nonlinear system without any sources and forces)
cannot be accepted. This implies that the source terms by no means act on the mean flow.



Keeping such an approach (see eq.(1.18) in [2] ) one could come to the wrong conclusion that
no sound waves are generated by force f if Vf =0, although the contrary example was given
in [3]. The similar problems also arise if we study the action of unsteady boundary conditions,
for instance those assigned on permeable or moving walls.

Lighthill’s famous paper [4] represented the first and the most influencing attempt to give
a theoretical model for the mechanism of sound generation by flow. Let us write the second-
order equation derived there for isentropic inviscid gas flow without any external sources

%pe/0t: — alApe =1, Pe= P—Po, Po,do = const , ¢}
n=208T, /x5, , Tiy=puitj + 8;[(p-po)—a (p—po)l,

where T, is Lighthill’s stress tensor. This equation is exact since no terms were omitted in
transforming the original equations of fluid mechanics. Unfortunately, the nonlinear term 7,
called as “quadrupole sound source”, includes unknown total variables u , p , p. Hence,
equation (1) is not closed, and we cannot determine the value of 1 before solving all the
problem. To soften this sharp question, the source region was assumed to be compact, and the
only aim declared was to estimate the far sound field in ambient stationary medium.

A new idea has been set up by Powell [5] to simplify the Lighthill’s approach. For inviscid
isentropic flow at low Mach number he assumed that

P-Po~ al(p-po), Ty= pouty,
and the approximate expression for the “dipole-like sound source” 1 was suggested as
N =~ Ng=pY[(Vxug)xup] , Vug=0. 2)

Thus, the incompressible flow variables Zg= { ug, pp, pp } are used to estimate 1 as well
as the far sound field. This means that we determine the nonlinear term 1 from the
precedingly found solution of the evolutionary problem posed within the quite different model
of incompressible fluid flow. Besides, like in [4], the difference p — p , was unfoundedly
regarded as the “acoustic pressure”. Anyway, this form of m g had evoked a lot of further
efforts to connect the sound sources solely with the region of nonzero vorticity, at least when
Vs=0.

Ribner [6] performed a modification of Lighthill’s model by introducing the new variable
Po =P —pp - As aresult, for subsonic isentropic flow he obtained the equation

a0 > [0%pa/81?] = Apy = Mo = —ao [8’pp/dt*] + &, 3)

and the term n, was called as the “monopole-type sound source”. There was assumed that
|€/Me | <<1,andso & could be omitted. However, if we intend to use (3) for the analysis of
sound processes, | € | may be not small in comparison with some terms containing the acoustic
variables. Rather, all the acoustic terms could be neglected in comparison with 1, .

It should be emphasized, that all the above mentioned versions of Lighthill’s model do not
contain any procedure for separating out the acoustic disturbances, and so this model by no
means can give a convincing definition of sound sources in unsteady flows, much less in the
internal ones. Nevertheless, irresistible attractiveness of this approach is explained by the
appearance of equation (1) which resembles the routine linear acoustic equation with
distributed external sources, so that even nowadays this model gathers innumerable followers.



Doing so, one could separate out a linear part from any equation if all uncomfortable
nonlinear terms were transferred into the right-hand side and called as “sources”.

Howe [7] suggested to take the stagnation enthalpy as the main variable for which the
exact second-order nonlinear equation has been derived. Actually, the total variables u, p, s
were used again, and no way was given how to separate out the acoustic components.
Therefore the habitual next step is done: the terms, which are regarded (without any
convincing evidence) as the sound sources, are to be approximated with the use of Z (r, 1) .

To comment the great number of experimental data which are usually drawn to confirm
the validity of the above approaches, it is relevant to give a few introductory phrases from [8]:
“Measurements in the far field, no matter how detailed and sophisticated, cannot lead to a
unique picture concerning the nature of the acoustic sources. One is forced therefore to make
measurements at the source location as well. This, however, proves to be a most elusive task.
Since the noise production is associated with a volume integral, point measurements (or even
two- or three-point correlation measurements) are insufficient to lead one to the desired
picture of the sources”. Thus, it is clear why diverse theoretical models of sound generation,
even if those are evidently invalid, exist till now. One should also remember that some of
those theories are resulted from exact transformations of the basic nonlinear equations of fluid
mechanics, and so they are able to reflect integrally all the phenomena in fluids. But we have
to be very careful in analysing any “agreement” of an aeroacoustic theory with experiment.

A new approach was offered by the author in [3] to the theory of sound generation and
propagation in unsteady subsonic flow of inviscid gas with nonuniform entropy field, but
without any external sources and forces. The /ocal splitting procedure was there applied, and
the expression given for the sound source was not invariant within Galilean transformation,
more complex conditions were beyond consideration, etc. Nevertheless, that approach was the
first exact two-medium model which did work in some particular cases and served as a starting
point for the radically new nonlocal theory, proposed in [9].

Bearing in mind all the previous experience, now we pose two key questions which
represent the fundamental problems in both fluid mechanics and aeroacoustics:

L. What is the most general definition of the flow which does not radiate sound? Instead of
the classical notion of steady flow, when we demand 0Z /6t = 0 everywhere and this can be
satisfied only in the unique reference frame, we should find an invariant definition of the
steady-structure flow which does not change its spatial structure and hence does not emit
sound.

II. The model of incompressible fluid flow is usually regarded as a limiting case (when the
characteristic Mach number tends to zero) of the much more general model of compressible
fluid flow. It seems illogical to apply these two radically different models simultaneously to a
certain flow as it was done in the aeroacoustic theories mentioned above. So one could ask: is
it possible that a sub-model of globally-compressible fluid flow (something like unsteady
mean flow with infinite sound velocity) can be separated out in a rigorous manner within the
general model of compressible fluid flow at finite Mach numbers?

2. BASIC EQUATIONS

Let us take the general system of nonlinear equations governing unsteady flow of inviscid
gaseous medium in the spatial domain G (with the boundary I" which can move) considered in
a certain inertial coordinate system K, within a time interval J, = (0, t4)

opu/ot + V(pu;u) + Vp = f + k , 4)

op/ot + Vipw) = &p, 5



ds/ot + uVs = g¢q, (6)
F(s,p,p) =0, (7)

where V(pu ; u) = (pu ,V) u + uV(pu) , f is the assigned force, £ is the mass source
strength per unit mass, k is the rate of momentum change because of mass source, g is the
entropy source per unit mass due to both volume heat release and a nonzero mass source. All
source terms {f , k , & , g} are assumed to be the functions of flow variables. The medium
will, to fix the ideas, be regarded as a perfect gas, i. e. we take (7)as s =c,In(p/p7), y=
const.

We can pose an initial-boundary-value problem for Z (r, £) = {u, p, p, s} in G x J; by
specifying Z (r, 0) = { (r), reG as well as the boundary conditions which we take as

O(u,,p,p,r,t) =0 atanysignof u 8)
s =0(r,t) only if ur <0, 9

where @ and O are the assigned functions, rerl, teJ; , u, = un, n is the outward normal
to the smooth surface I', us=wu,— up , up is the assigned velocity of I" along n.

3. PROCEDURE OF DECOMPOSITION

We decompose all the flow variables as a sum Z = Z, + Z , where the subscripts a and v
are used to label the acoustic components and the variables denoting the background unsteady
flow. Following the basic concept [3] first we solve the separate initial-boundary-value
problem for Z , in a medium which is characteristically similar to the model of
incompressible fluid flow. Then we pose the other problem for Z , taking Z, as known
functionin G x J,.

A number of necessary requirements was imposed upon the splitting procedure to make
sure that our model is unique. Among those were: all resulting equations should retain
invariant form within Galilean transformation; sound waves are to be precluded within the
system written for Z, (i.e. the sound velocity is infinite there); all the source terms must be
integrable square over the infinite flow domain; all sound sources must be equal to zero in
steady-structure flow which does not change its spatial structure in time even if it is rotating;
all sound sources should be minimized to eliminate the spurious quasisound effects; all these
sources are not to change the local specific entropy, etc. Besides, the model has to reduce
naturally to a series of limiting cases.

So we write the following general system for Z, (r, f)

dpyu,/ot + V(pyu,;u,) + Vp, = (1 - 4,)(f, + k) + m,W,, (10)
dpy/0t + V(pyuy) = (1 -42)8,py + my , (11)
8s,/0t + uyVs = (1 - A3)q,, (12)
F(sy,pv,pv) =0 (13)

where { 4, A2, A3 } are the weight functions. The main problem is to find the proper
expressions for the sound sources m, , m,W, .



To generalize the operator 0/0t (here applied to a certain function p (r,#) in G x J;), that
will enable us to give a nonlocal definition of m, and W, , we introduce the functional

Y(r ) =¥Y{p} = 0p/ot + (V+Qxr)Vp - H, H=H(),
with unknown vector function N(f) ={ N, }, j=1,...7 if we denote
N1=V1, N2=V2, N3=V3, N4=.Ql, N5=Qz, N6=Q3, N7=H.

Let us also introduce the other functional

Y¢) = J[ap/6t+(V+er)Vp—H]zdxldxz d 3 (14)

G
to define the norm of ¥ as || W(r, ©) |l = ¥(¢). Then we have to find the set N = N 6]

which minimizes Y. It would be illogical to minimize the integral of W¥(r, f) over G since it
could be equal to zero, although the local values of ¥ may be considerable. The values of
unknown functions N (f) at any time can be obtained from seven linear algebraic equations

oY/oN, =0,  j=1,...7 (15)

which correspond to the necessary conditions for the functional Y(¢) to reach its minimum on
the set of all admissible values of N, (7). At the same time we demand all integrals to be
convergent even if our spatial domain is infinite.

One can readily prove that conditions sufficient for Y (if Vp # L(#) in G ) to reach its
minimum are hereby satisfied as well. Further we will imply the functional ¥(r, ) to be
taken at N(¥) = N (¢) that ensures the m1n1ma1 value of Y(¢) at the moment. This means that

we have found the unique reference frame K' (it is translating at a velocity U(#) and rotating
at angular velocity Q(f) relative to K,) in which we have

W(r' ) = ¥Y{p} = p/ot - H .

Clearly, the values of ‘(r, f) are the same in any reference frame we have taken.

Let us consider some particular cases in the solution of system (15). For instance, if we
analyse axisymmetric vortex structure convected by uniform background flow, we should take
Q =0, although any value of Q satisfies (15).

When we have the case Vp = L(¢), the unique solution of system

oYsnv, =0, 0Y/o2,=0, i=1,2,3

will be obtained if we define H = dP,/dt where P, (f) is the average value of p in G. This
value is attained in the central point of plane p (r, ) = const (like in the centre of mass)
within our domain G. Generally, function H has been introduced to exclude the contribution
of dP./dt # 0 into the value of W . This can be interpreted as if we observe the waved sea
surface irrespective of the variable sea depth.

Let us also consider the limiting case when we analyse function p (r, f) in a domain G
with its volume tending to zero. Then domain G can be regarded as a small vicinity of a fixed
point r.. Suppose we know Op /0t as well as Vp # 0 in that point at any time. If we take



W=pVp, H=0, sign(B)=-sign(@/ar), |B|=|ap/at|(Vp)*,

then W{p} =0dp /0t + WVp = 0. This means that we should take domain G rather
extended to analyse function p (r, f) there. On the other hand, if we consider a vast spatial
domain which contains p (r, f) with numerous nonuniformities as well as with many
randomly distributed local extrema, the set N’ (f) may be overaveraged.

In the particular case of infinite spatial domain, if the value | p —p » | goes rapidly to zero
while r — o, at leastas |r|™%, wedemand H = 0 (then P, = p = const).

As a result, we offer the radically new definition of the sound sources

my, = ay, *¥{p,}, a,’(r,f) = dp,/8p,, W=V +Qxr, VW,=0.

Here the source m, as wellas N*(7) = {V, Q, H} are obtained implicitly from Z,(r, #), and
consequently this model is essentially nonlocal, although in some particular cases (for
instance, when the flow is spatially symmetrical) functions V , Q , H can be found
immediately and then system (10)-(13) is much more simple.

When f=0,& =0, we can write the following equation

py[Ou,/0t + (u,,V)u,] + Vp, = m,(W,-u,),

which can be readily derived from (10)-(11).
In the particular case s = s, = const, & = 0 equation (11) takes the form

Vip,(u, - W, )] + H/a,} = 0.

If one analyses the local characteristic properties of system (10)-(13), the fact will be
proved (when |u, — W, | < a,) that the sound waves cannot take place there. Doing this we
cantake H=0,f,=0,k,=0, g, =0, &, = 0 since all these represent zero-order forcing
terms, and function W, is assumed to be known during the Jocal analysis. As a result, our
model of unsteady subsonic mean flow does display the characteristic features similar to those
* of the model of globally-compressible-fluid flow [10].

Decomposition of boundary conditions is a separate and very delicate problem. For
instance, one can formally split the condition #, = ¢ (r, f) , rel';cI' by introducing an
arbitrary function A g (f) (even with | 4 5, | > 1) so that at each point on I'; we have the
conditions for Z, and Z, respectively #y, =(1—Ap1) ¢, #an=Ap ¢. Thus we have the
total set of indefinite weight functions A()={A4,1,42,43,4p,4p ,..}. We demand
function A to be of minimal norm, and usually A = 0 is taken (that will be implied below) .
However, in some particular cases we cannot assign A = 0.

4. ACOUSTIC EQUATIONS
Taking Z, (r, ) as known function in G x J; , we can write the nonlinear system of
equations for Z ,(r, f) that complements (10)-(13) to the initial system (4)-(7)
ow,/0t + Ay + Vpo, = A1 (f, + k) +f, + kg —m,W,, (16)
apa/at+VWa = Angpv"l" E_,apv+ ivpa"' E,,apa _mVr (17)

Osq/0t + u, Vs, + uVs, + u,Vsqy = A3zqy + qa , (18)



F(sv+Sa ., PvtPa , PvtPa) = 0, (19)
where A= V[(W, ;uy) + (Wg;u,) + (We 5ug)],
Wg = PpylUg t pagly, + polg, W, =pyly .

Herewesplit g = ¢ —q9v, 9 = q(Z), ¢q,= q(Z,) and similarly for f,k,§.
If || Zo,/Z,]|<<1 in G xJ;, then we can write the linearized version of the above
equations. Furthermore, one could simplify the model by assuming s = s, , 5, = 0.

5. APPROXIMATE VERSION OF THE MODEL

One can encounter a lot of difficulties in applying the most general version of our nonlocal
theory to the solution of practical problems. Therefore it would be much desirable if we find
an approximate procedure how to calculate the sources m, , m,W, explicitly from the ready
solution of an initial-boundary-value problem where no sound sources were considered. At
first sight, this may resemble the idea expressed in [5] that the analysis of an incompressible
fluid flow could give an information about the sound sources in a compressible fluid flow.
However, the main difference between our approach and all others must be emphasized: we
are trying to simplify the model by approximating Z , (r, f) affer obtaining the exact
expressions for sound sources.

Let us apply the nonlocal model of globally-compressible fluid flow [10] to the solution of
our problem. Within that model we write the following system of equations in G x J,

op-u./0t + V(p,u,;u.;) + Vp.= £, + k., (20)
Op:/0t + V(pruz) = E:pr @21)
os./0t + u Vs, = q., , (22)
F(s:, Pr, p:)=0, Pr=P() >>]|p:|, (23)

supplemented with boundary conditions like (8)-(9) where
O(uepn, Pr, pr, r,t) =0, reG, tel, , (24)

and with the initial field Z ;(r, 0) = ; (r). The subscript 7 remindes that we are now using
the different model which is intended to approximate all variables Z , (r, #) of unsteady mean
flow at M ? << 1. From equations (21)-(23) we can also derive the following one

Vu, = &, +n, - (dP./dt)/(yP;), N:=q:/cp,

which reflects the nonlocality of this model (see [10] ). In consequence, we can obtain the
solution Z ., (r, ) ={u.,p:,p:,S5:, P} in G xJ;. Then we define the relation between
Z . and Z, asseries withterms O(e"), n=1,2,3,..,e =|p. ||/P: < O(M?*)<<1
u, = u,+u; +tu; +.., Pv=Pr+Pl+Pz+--,
(25)
Sy = sct sty pv= P +pr +p1+p2..,



where F(s., P, +p.,p: +p1 )=0, ie. for a perfect gas we have p, zp,/a,2 , a?
=yP,/p, . Thenwecantake Z,,={u, ,s, ,P.+p,.,p.+ pi1} as the first
approximation so that with the same accuracy we can determine the sound source

my=a; W{P. +p.} = a; *¥{p:}

Further we can find Z,, ={u,+u,, s.+s,, P.+p:+p1, p-+tp1+p2}andsoon,
but the first approximation Z,; may be sufficient to solve many aeroacoustic problems.

In this way we can study the great number of known solutions obtained within the classical
model of incompressible fluid flow. As an example, let us take the two-dimensional solution
given by Kelvin for the rotating elliptic vortex (the same for the elliptic cylinder rotating at
constant angular velocity in potential flow). That solution was used in [7] to approximate the
sound sources by following the approach [4-7]. However, if we take that solution to find Z .,
then we will come to the undeniable conclusion that such a mean flow does not radiate sound
at all. Even if we estimate the possible contribution of further terms of expansion (25) into the
far sound field, its intensity will be much less than that given in [7]. Actually, the spurious
quadrupole sound source has appeared in [7] only due to the wrong aeroacoustic model
applied there.

Besides, the important general conclusion is resulted from our model: changes in the
structure of external potential shell of a vortex may give the substantial contribution into the
total strength of the sound sources.

The above model was successfully applied to the analysis of the phenomena of sound
generation in diverse unsteady subsonic flows, both internal and free, also taking into account
the nonlinear interactions between coherent vortex structures and small-scale turbulence.
Effective means of boundary control have been developed with the aim to create the high-
stable nonuniform flows with minimum sound emission, that will promote a lot of practical
applications.
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