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ABSTRACT
Floating slab track is a popular approach used to try to reduce vibration transmitted from

underground railways into the surrounding soil and thence into nearby buildings. The rails are
fixed to a concrete slab foundation which is supported on a resilient mounting, so isolating the
track from the tunnel invert. However, the effectiveness of the vibration attenuation does not
compare well with the simple mass-spring models typically used in the design of these tracks.
This paper uses models of infinite length to investigate the performance of floating slab track in
more detail. A track model constructed from an infinite series of repeating units is presented,
each unit being two beams (for the rail and the slab) separated by elastic layers (for the resilient
elements used in the track construction). An improved model consisting of an infinite slab

beam mounted inside a tunnel of infinite length in soil of infinite extent is also presented.

INTRODUCTION
Figure 1 shows the typical arrangement of an underground railway line using floating slab

track (FST). The rails are fixed directly to a massive concrete slab by means of rubber rail
pads which provide protection to the concrete as well as some reduction in noise produced.
The slab is mounted on resilient elements (usually rubber bearings or steel springs) to isolate
the track from the tunnel invert. The slab may be continuous, or it may be composed of
discrete sections. A train running along this track provides input excitation to the system both
through its moving static load and through irregularities such as rail-wheel roughness, wheel
flats and rail joints.

There are many variants of FST and some of these are described by Esveld (1989) and the
ORE D 151 Specialists Committee (1982). Grootenhuis (1976) presents measured results
from the London Underground Barbican track system, which show that FST does provide
significant attenuation of transmitted vibration.



I

I

I

I

I

END SIDE

FIG. 1: The layout of an underground railway line and its various components

Several models for the transmission of vibration from underground railways into adjacent
buildings have been proposed. Trochides (1991) and Kraemer (1984) use simple impedances
to model everything between the excitation on the track and the response in the building. A
more complicated model based on the finite-element method is given in Chua et al. (1992).
This is a two-dimensional plane-strain model comprising a cross-section of the track, tunnel,
ground and building. Balendra et al. (1991) derive an analytical model of a similar two-
dimensional system by means of a substructure technique. Hunt (1995) uses a repeating-unit
method to examine building models of infinite length in the context of vibration generated by
underground railways.

Design methods for railway track are often based on simple lumped mass-spring models.
Capponi (1995) summarises some of these approaches as used for FST. Wettschureck (1995)
describes a similar method used to select elastomeric elements to reduce vibration and noise
generation in conventional ballasted track with sleepers. Similarly, Jones (1994) examines the
vibration attenuation performance of different configurations of ballasted track by means of a
two-dimensional model of a mass and spring on an elastic halfspace as foundation.

Jones (1994) also presents a model consisting of a two-dimensional infinite beam with
elastic foundation placed on a three-dimensional elastic halfspace. Beams on various
foundations are often used to determine railway track responses. Grassie et al. (1982) give
models for ballasted track based on infinite beams on simple elastic support, on continuous
two-layer support incorporating sleeper mass, and on discrete support including sleeper
masses. Dahlberg et al. (1993) use a finite-element approach to obtain a beam model of
ballasted track which includes rail irregularities. Patil (1988) uses an infinite beam on elastic
foundation to determine the response of railway track to a vibrating mass, and Duffy (1996)
extends this to the case of a moving vibrating mass. Beams are combined in Esveld et al.
(1996) to represent a light-rail track mounted in a concrete slab supported by layers of asphalt
and soil. Courage and van Staalduinen (1996) construct a model of an elevated railway using
nine sections, each section comprising a beam for the rail mounted on another beam for the
viaduct.

An analytical solution for a tunnel of infinite length surrounded by soil of infinite extent is
given in the companion paper by Hunt and May (1997). This model is based on the earlier
work by Kopke (1993), who developed a model for the driving-point response of a pipe in
infinite soil from a theory of elasticity formulation as part of an investigation into vibrating
pipeline inspection devices (PIGs).



FIG. 2: Double beam models of FST using (a) a continuous slab and (b) discrete slabs

FIG. 3: Adding double-beam units to create FIG. 4: A more realistic model of a railway
a semi-infinite structure, showing the states includes masses on the rail to represent the
S at the ends of the units. axle-wheel assemblies of a passing train.

MODELLING FLOATING SLAB TRACK
The three-dimensional underground railway track shown in Figure 1 can be thought of as a

two-dimensional model consisting of an infinite beam, representing the two rails, mounted on
another infinite beam, representing the slab. This is shown in Figure 2(a). The elastic layers
between the two beams represent the rail pads and the slab bearings. In the first instance, the
foundation is considered rigid. This is an extension of a simple beam on elastic foundation
(Winkler beam). The lower beam maybe divided into finite sections to model discrete slabs, as
in Figure 2(b).

The Repeating-Unit Method
Either of the two models given in Figure 2 can be constructed of an infinite number of

finite-length double-beam units. For continuous slab track, both the top and bottom beams of
the unit are joined end-to-end; for discrete slab track, only the top beams are joined. The
details of this method are given in Forrest (1997), so only a brief description is given here.

Figure 3 illustrates the principle of the repeating unit method. The aim is to obtain the
dynamic stiffness matrix (DSM) of the semi-infinite structure. Conceptually, a semi-infinite
series of double-beam units are added together; it is clear that adding one more unit will not
change the dynamics of the structure.

Euler beam equations and generalised boundary conditions can be used to find the DSM of
the double-beam unit. This DSM can be used to get the transfer matrix relating the state S of
forces and displacements at one end of the unit to that at the other. The crux of the method is
that states are assumed to propagate along the structure unchanged except in magnitude and
phase. This gives an eigenvalue problem and a solution for the semi-infinite DSM which
condenses the dynamics of the whole structure to a relationship between the forces and
displacements at the free end. An infinite track is composed of two semi-infinite halves, one
extending to the right and one extending to the left.

To model the effect of railway vehicles on the track, masses representing axle-wheel
assemblies can be added to each repeated unit to give a model like that in Figure 4. This
shows a force input at only one axle. More realistic still is the use of roughness-displacement
inputs between axles and rails, and multiple inputs; these are dealt with in Forrest ( 1997).
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FIG. 5: A slab beam fixed (a) directly to the tunnel invert and (b) with a resilient layer
between. Both cases are compared to an “equivalent” Winkler beam with the stiffness per unit
length k,~Ui,to simulate the effect of the tunnel.

The parameters used in the double-beam model are as follows. The rail beam has mass per

unit length ml = 100 kg/m, bending stiffness Ell = 10x 10b Pa. m4, support stiffness per unit

length kl =40x 106 N/m2 and damping parameter <~ =05x 10-3 s. The slab beam has

mz = 3500 kg/m, E12 = 1430x 106 Pa. m4, k2 =50x 106 N/m* and cl = 1X 10-3 S. The

damping is included in the stiffnesses as terms like k (1 + im~).

The Track Mounted in a Tunnel
The FST is in reality supported on a tunnel invert rather than a rigid base as has been

assumed in the preceding section. In this paper, the tunnel is represented as an infinitely long
tube surrounded by a medium of infinite extent to represent the soil. This is similar to the
situation depicted in Figure 1, except that there is no free surface of the soil. The tunnel model
is derived from a theory of elasticity solution for the problem, and details are given in the
companion paper by Hunt and May (1997).

To examine the effect of the tunnel, a track must be joined to it. The current work
considers only the track slab. Figure 5(a) illustrates a slab being directly fixed to the tunnel
invert, with an “equivalent” Winkler beam for comparison. The “equivalent stiffness” to use in
the Winkler model is found by equating the static driving point deflections of the slab in the
two cases. Figure 5(b) shows the insertion of a resilient layer between the slab and tunnel, and
the same addition in the “equivalent” Winkler beam.

Figure 6 gives the responses of interest in the slab and tunnel system. The slab and tunnel-
floor displacements y, and yz are required in the joining of the two. The displacement y3 in

the far soil is important as it provides vibration input to building foundations situated there.
All these depend on longitudinal position z in the tunnel and on time. (The soil response is also

a function of radial and axial position; radius and angle are fixed for the tunnel floor.)

The response calculations can be most conveniently done in the wavenumber (y) domain,
rather than the space (z) domain. This is because joining the infinite slab beam along its length
to the infinite tunnel involves a convolution in the z-domain, and hence simple multiplication in

the y-domain. The calculations are done on discrete variables, so the total sample length and
spacing between samples in space must be chosen carefully as in any other situation using
discrete Fourier transforms. The variables are also already in the frequency domain by virtue
of the harmonic analysis approach used.
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FIG. 6: Schematic of the tunnel plus slab showing the three required responses: along the slab
beam, along the tunnel floor, and in the soil.

When the slab is excited by a single unit point force as shown in Figure 6, the equations

governing the combined system in the y,odomain are

~= HIC(G1+l)

Y,= H2. G2

Gz = –G,

1

(1)

and Yz= ~ if no resilient layer present

or G, = –27ck(~ – Yz) if there is one

where ~ is the response along the slab, Yz is the response along the tunnel floor, G1 is the

interaction force acting on the slab, G2 is the interaction force acting on the tunnel floor, HI is

the FRF along the slab to a point force acting on the slab, and H2 is the FRF along the tunnel

floor to a point force acting on the tunnel floor.
Solution of equations (7) for the case with no resilient layer give the result

~= Y,= H,. H,/(H, +H2) (2)

which can be used to find the “equivalent stiffness”. For the case of an added resilient layer of

stiffness k per unit length they give

~= H,. (l+2nk” Hz)/(l+2nk ”H1+2nk. Hz)

Y,=2nk” H,” H2/(l+2zk ”H, +2zk. Hz) 1 (3)

where the factors of 27t arise from the definition of Fourier transform used. The response Y~

along a line in the soil and parallel to the tunnel is determined for either case above by
Y3 = (H3/Hz ) “Y2 (4)

where H3 is the FRF along that line due to a point load acting on the tunnel floor.

The displacements of the combined system in the z-domain are obtained by taking the
inverse Fourier transform of the results from equations (2), (3) and (4). .

The parameters used in the slab-plus-tunnel model are as follows. The slab has mass per

unit length m = 3500 kg/m and bending stiffness El = 1430x 10b Pa. m4. The tunnel has

density p, = 2500 kg/m3 , Young’s modulus Et =50x 109 Pa, Poisson’s ratio v, = 0.30

and damping parameter D, = Os. The soil has p, = 2000 kg/m3 , E, = 470x 106 Pa,

v, = 0.44 and D, = 1x 10-5 s. Darnping is included in E in terms like E( 1+ zWI), as well as

in a loss factor q = 0.1 in the stiffness per unit length k in the form k (1 + iq).

RESULTS
Several results for the double-beam models on rigid base are given in Forrest (1997). The

following two graphs are taken from that source.
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Figure 7 shows the responses of the top and bottom beams directly underneath a point
force applied to the top beam, for various slab lengths. The continuous slab results show
resonances at about 20 Hz, corresponding to the resonance of the rail beam on its railpads, and
100 Hz, corresponding to the resonance of the slab on the slab bearings (and the onset of
traveling waves in the respective beams in both cases). These can be predicted by a simple
mass-spring system equivalent to one metre of track. However, the introduction of discrete
slabs produces another set of resonances, particularly noticeable in the slab response, due to
standing waves being set up in the slab above the frequency where traveling waves in the slab
occur. Longer discrete slabs give more and lower-frequency resonances, since they can
accommodate longer wavelength standing waves. Thus local displacement response is
markedly affected by slab length. As slab response determines the force impressed on the
ground, this is an important effect.

A better track model is that including axle masses, as depicted in Figure 4. Figure 8
illustrates the effects of axle spacing and axle mass on the total force (obtained by summing all
the increments of force under the slab beam) transmitted to the foundation. The second
resonance of the system is lowered due to the presence of the extra mass from the axles, but it
is the axle mass and not axle spacing which changes this resonance’s position. This suggests
that the axles are interacting with a “characteristic length” of the rail beam rather than having a
distributed effect. Spacing only begins to affect response above 100 Hz, the onset of traveling
waves in the rail beam.

FST is mounted inside a tunnel rather than on a rigid base as assumed so far. Figure 9
gives the results of the slab-plus-tunnel model compared to an “equivalent” Winkler beam as
discussed previously. Figure 9(a) shows the driving point response of the slab. When the slab
is fixed directly to the tunnel, the response is very flat compared to the Winkler beam which
shows a clear resonance. This is due to the large amount of radiation damping provided by the
tunnel: energy is propagated away into the soil. As softer and softer resilient layers are added
between slab and tunnel, the slab response gets closer to the Winkler approximation.

However, away from the load the picture is different. Figure 9(b) shows that when softer
resilient layers are added, the slab response 20 m from the load increases, as well as being
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FIG. 9: The slab’s response (a) at the driving FIG. 10: Radial response of soil (a) at a 20 m
point and (b) 20m along the slab, for varying radius from the driving point on the slab and
added k (“inf” means slab direct to tunnel). (b) at a 20 m radius and 20 m longitudinal
Thick lines: slab-plus-tunnel model. Thin position from the driving point. Both at 90°
lines: “equivalent” Winkler beam. circumferential rotation from tunnel invert.

different from the Winkler result. This higher response occurs because energy can travel down
the slab rather than being radiated into the soil straight away.

The response in ‘the soil 20 m from the tunnel, given in Figure 10, is greater for the lower
frequency ranges for the cases with added resilient layers. Nevertheless, insertion of resilience
between slab and tunnel provides reduction in vibration levels starting a little above the
resonant frequency (clear in Figure 9(a)) of each particular case. This is comparable to what
might be assumed from simple one-degree-of-freedom mass-spring systems.

CONCLUSIONS
Initially it may seem that some features of FST can be explained by simple mass-spring

models, but there are important ones which cannot. Investigation of double-beam track
models reveals that local slab displacement is significantly affected by slab length, with extra
resonances appearing, and addition of axle masses to the rail gives results which can be only
partly explained by interaction with a “characteristic length” of rail. These effects can be
ascribed to traveling waves in the beams. Mounting a track slab in a tunnel gives responses
which are generally not well-predicted by an “equivalent” Winkler beam. Most importantly,
soil displacements – the vibration inputs to buildings – can now be calculated. The qualitative
aspects of when vibration attenuation begins are comparable to simple isolation theory, but the
quantitative details of the soil response can only be gained from a model such as this.
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