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The results ofdirect and inverse scattering ofplane acoustic waves from impenetrable
and penetrable objects are reported here. It is assumed that the scatterer boundary
is a superposition ofan arbitrary deformation on an underlying simple geometry. The
direct problem is solved via the Pad& extrapolation of the boundary variations. This
results in solving only certain algebraic recursion relations and requires neither Green’s
function nor integral representations. The inverse problem of recovering the obstacle’s
shape and material parameters from the far-field scattering data is solved by Gauss-
Newton minimization. The calculation of the scattered field and its Jacobian involves no
more than solving a series of Helmholtz scattering problems in the same domain, namely,
exterior to the simple shape instead of the iteratively updated deformed surfaces leading
thereby to substantial computational simplifications. Finally, several two-dimensional
obstacles of various shapes are inverted for their boundaries as well as their material
parameters of mass density and wavenumber.



1 Introduction

The results of direct and inverse scattering of plane acoustic waves from Neumann and
penetrating obstacles in a homogeneous, infinite medium are reported here. In the direct
or forward problem, the obstacle is given and the objective is to determine how the plane
wave is scattered by the object. In the inverse problem, on the other hand, it is the scat-
tered field that is given, and the problem is to recover the scatterer (the boundary shape
and the material parameters) from the given scattered field. In this paper it is assumed
that the boundary of the scatterer can be described as a superposition of a deformation
61’ (which may be finite) on a simple underlying geometry l?. which is considered to be
known. It is further assumed that the magnitude of the d~formation 61’ is ~inearly propor-

tional to some deforming function ~. That is, 81’ = A~(0), A G R1, and t9 c S2, the unit
sphere in R3. The solution of the forward problem makes use of this decomposition of
the scatterer shape. The inverse solutions are obtained from the far-field patterns via the
Gauss-Newton iteration procedure using the Levenberg-Marquardt nonlinear parameter
estimation scheme. As is well-known, these procedures require that the forward problem
be solved and the Jacobian of the scattered field (i.e., the derivative of the scattered field
with respect to a suitably chosen parameterization of the boundary) be determined at
every stage of the iteration. The formalism discussed here particularly addresses these
two crucial questions. More details appear in [1]. It is assumed that the penetrable scat-
terers are homogeneous in their material parameters, which are the mass density p and
the wavenumber k.

2 Description of the Method

The solution of the direct problem basically consists of two steps: the determination of
the scattered field assuming a slight perturbation (J small) of the underlying simple shape
173,and then extrapolating the result to the actual, finite variation of the boundary (A not

necessarily small). Here, we consider scattering in two space dimensions only, for which r.
is assumed to be a circle 17Cof radius r.. The decomposition of the scatterer boundary is
then given by r(0) = ro+~~(t?), 6 c [0, 27r] (see Figure 1). ~((?) is the function that deforms

L
the circle and is represented by a finite Fourier series, namely, ~(~) = ~ cqei~o,al = all,

1=–L
where * denotes complex conjugation.

For IzI > max [To+ Af(d) 1, the scattered field is expanded in terms of the outgoing
oE[o,2m]

wavefunctions, namely

where H$ ) is the Hankel function of the first kind of order m. Also, for small values of
A, ~c can be expanded in a Taylor series [2]

(2)

~(o) corresponds to scattering for the undeformed circle I’C. It can be shown [1, 2] that
@(~) can be obtained for all m by solving the same Helmholtz scattering problem as that
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Figure 1. The geometry of scattering of a plane acoustic wave from an obstacle. The
scatterer shape is given by r(~) = To+ ~~(0), 19~ [0, 27r]. 00 < @ < 27r, 00 > 0. For a
Neumann object the interior wavenumber k- vanishes.

of the forward problem in the domain exterior to r,, but with different boundary data
that depend recursively on @j, p < m. Moreover, on the circle rC, the coefficients ~~(~)

admit of the Rayleigh expansion

The coefficients ~n,. are obtained by making use of Eq. (3) and the boundary data for
~(~1 on 17C.Since the ~(~)’s are determined recursively, then so are the ~~,.’s. Finally,

the coefficients -y~ in Eq. (1) are related to the coefficients /3~,. of Eq. (3) as

?m = ~ ~m,nAn. (4)
n.—~

The above relations hold only for small values of A. However, for a finite deformation, that
is, when A is beyond the radius of convergence of the Taylor series (2), *SC is calculated
by extrapolating the Taylor series by the Pad6 approximation [3].

Note that all calculations refer only to 17Cand not to the deformed surface of the scat-
terer. This is particularly significant from the viewpoint of the inverse solution since in
a Gauss-Newton iteration process, the scatterer boundary is continuously updated. This
fact together with the form of the recursion relations for ~~,n (see Section 4) introduces
substantial simplifications in the computation of the Jacobian. As pointed out earlier, the
Levenberg-Marquardt algorithm requires the knowledge of the Jacobian, the determina-
tion of which accounts for the major portion of the computation time. It can be shown [1]
that using the methodology of this paper, the computation of the full Jacobian involves
no more than solving a single, albeit extended, forward problem in the domain exterior to
r,. Therefore, the domain in which the scattering problem is solved in order to determine
the Jacobian remains independent of the stage of iteration. This is a crucial point.



3 Results

The main results consist of the recursion relations for ~~,., which are written below for
the Neumann and transmission problems.

Neumann Scatterer

The exterior Neumann boundary value problem in 0. = R2\f2~Cis given by

(A+ k’)+ = O in 0,

The recursion relation for /3~,. is

where the Tim’n are defined as

(5)

and
m–l m–j–l L(m–j)

T;’n = ~ ~ ~ (-M-VP +P)z(~ - 0:::; :;;;’
jdl p=O /=–L(m–j)

1 ~(m-~-p-w)..‘O!m-j,lPj,n-l n–1
~~&+P

The argument ~ of the Bessel and Hankel functions stands for kro, and Qp,l is the lt~
Fourier coefficient in the expansion of the p’~ power of the deformation function f(o).
Moreover, ($) = ~, where (p is either Jp or Hp.

Penetrable Scatterer

The scattering problem for penetrable scatterers is



(A+ It?)@. = O in Q.C

8++ = p+ 8$.—— r
h

on SC
p- h

For the transmission problem, we have two sets of coefficients, one for the interior and
one for the exterior region. The following two recursion relations apply for the penetrable
obstacles.

4

DLJ+W)(C+)- oi,nPo~-lilw =~ R:’n (6)
i=l

and

PA,?ZH.K+) - /Z,nJn((-)Pm,n = 5 Sy’n (7)
2=1

where in Eq. (6) the R:’” are defined as

m–l L(m–j)

R;’” = ~ ~ (-z)’~~m_j,/fim-~+l~j ?
j=O /=–L(m–j)

and

m,nR4 = ‘~lm~-l ‘(~’) (-i)’(-l)p(l +P)~(n -0$:: :;:”
j=O p=O /=–L(m–j)

1
.— ~m_j,lA m–j—p–1

~j&Fp
>

Similarly for Eq. (7), the Sz~’n are defined as

and

m–l L(m–j)

S;’n= E ~ (-2)’@771_j,/(~+ ~m-j#m-j)
J,n–1 + .-, (’5+) - P,;n-,k!-jJ::;j) (&_)).

j=O /=–L(m–j)

In this notation, k+, k- are the exterior and the interior wavenumber, respectively.
Also, & = T-ok+. /3;,n refers to the coefficients for the scatterer, and ~~,n are the coeffi-
cients of the ambient medium.

Solving ~~,n from the coupled systems (6) and (7), replacing it in Eq. (4), Pad6

extrapolating and finally, using the expansion (1) then solves the transmission problem.



4 Main Features of the Method

The method presented above has three essential features which are significant when solving
the inverse problem. First, all calculations refer only to the circle I’. and not to the ac-
tual boundary shape which undergoes continuous updating in a Gauss-Newton inversion.
Secondly, the recursion relations for the coefficients /3~,. are such that the determination
of the full Jacobian of the scattered field (the knowledge of which is required in the min-

imization process) amounts to solving a series of Helmholtz scattering problems in the
same domain (which is fle = R2\fi~C)with different boundary data. This is to be con-
trasted to that of solving these scattering problems in distinctly different domains, one for
each of the Fourier coefficients in the Fourier paramet erizat ion of the boundary 17s.. This
results in a significant simplification in the calculation of the Jacobian which accounts for
most of the computing time. (More details on this point appear in [1]). Thirdly, since the

~n,n’s are determined by solving a set of algebraic recursion relations that involve neither
Green’s function nor any integral representation of the scattered field, the nonuniqueness
resulting from the interior eigenvalues of the corresponding adjoint Dirichlet problem [4]
does not arise.
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Figure2b Figure2c

Figure 2. Reconstructions of boundary for sound-hard objects from the far-field data.
a) Sausage: T(O) = 1+ 0.3cos(20) +0.03cos(40) from 90°wedge ofdata (that is, @ =90°
in Figure 2). Number of frequencies used = 3, and the number of unknown Fourier
coefficients = 17. b) A 2.0:1.0 ellipse from full-cycle data using 3 frequencies, and 17
unknown Fourier coefficients. c) Cloverleaf r(~) = 1 + 0.3 COS(46) from 15° wedge of dat a
using 41 frequencies, no noise, and 17 unknown Fourier coefficients. Figures (2a) and (2b)
have 8% noise added to the data. ———actual shape, --- reconstructed shape.
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Figure 3. Reconstructions of the shapes of some penetrable objects from the far-field
data. a) Sausage: r(O) =l+0.3cos(20)+0. 03cos(40) ~t=3.00, pt=0.500; ~~=l.50, p~=
0.800; Kf = 3.34, pf = 0.483. b) A 4.0x3.O Box with rounded corners Kt = 3.00, pt =

0.250; Ki = 1.00, pi = 1.00; Kf = 2.33, pf = 0.237. c) A 1.6:1.0 Ellipse Kt = 4.00, pt =
0.333; Ki = l. 00, pi = 1.00; Kf = 3.47, pf = 0.336. d) Cloverleaf r(13) = 1 + 0.3cos(46)
Kt = 2.00, pt = 0.500; Ki = 1.00, pi = 1.00; Kf = 2.02, pf = 0.520. The reconstructions
used full-cycle data, three frequencies, 17 unknown Fourier coefficients, and with 870
random noise. Here ~ = k+/k– and p = p+/p–. The subscripts t, i, j refer to the true,
initial, and final values, respect ively. — actual shape, --- reconstructed shape.


