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ABSTRACT

An accuracy criterion that is well suited to time domain finite element (FE) calculations is pre-
sented. It is then used to develop a method for selecting time steps and element meshes that
produce accurate results without significantly overburdening the computer. Use of this method
is illustrated with a simple example, where comparison with an analytical solution shows that
results are sufficiently accurate, which is not always the case with more primitive methods for
determining the discretisation.

INTRODUCTION

The finite element method is a numerical method that is particularly well suited for predicting
acoustic responses at low frequencies, especially when the boundaxy conditions are irregular.
In theory, its accuracy is limited only by the accuracy of the mathematical model on which it is
based (e.g. the governing partial differential equations and modeling of boundary conditions),
as one can always increase accuracy by refining the discretisation. Unfortunately, freer meshes
require more memory and calculation time on the computer, so the user of the method is
constantly in a dilemma If too coarse a grid is used, results will be inaccurate, whereas a grid
that is too fine will overburden the computer. There is therefore a need for a method to obtain
good discretisations - i.e. discretisations tlat will achieve a specified degree of accuracy with
the lowest possible burden on the computer. The aim of this paper is to present such a method
for time domain calculations.

The fwst step is to fmd a good way to specify accuracy - i.e. a criterion that is simple and yet
gives a sharp dividing line between what is acceptable and what is not. This criterion combined
with an a priori error estimator can then be used to determine some bounds for the discretisa-
tion -in this case a maximum time step size and maximum element side length.



THE ACCUIWCY CRITERION

In reference [1], it is pointed out that the dominating error in time domain FE-calculations
takes the form of a falsely predicted dispersion. The accuracy criterion presented here has
therefore been constructed so that it reflect this error.

It is well known in the field of acoustics that the acoustic pressure field p(x,y,z,t) in any en-
closure can be split into eigenfunctions. If any coupling between eigenmodes is neglected and
all damping is viscous, then the acoustic pressure is given by the following expression:

{

.

p(x,y,z,$ =Re ~ aj.pj(x,y,z).e ‘%’
}

+ PO(X?Y,ZJ)
j.~

(1)

where the o;s are complex eigenfiequencies, the Pj (x,y,z)’sare the corresponding complex
eigenmode shapes and pO(x,y,z,t)is a real function which arises from the excitation. The ajs
are complex constants expressing the phase and amplitude of excitation of the resonance
modes at the time t=O.

Under the same assumptions as above, a time domain finite element solution can be decom-
posed in a similar way, the only difference being in the values of the ~’s, ti~s, pj(x,y,z)’s and
po(x,y,z,t) which only will be approximations of the correct values or functions. This is ex-
pressed as follows:

{

.

p(x,y,z,t)=l?e ~ iij.fij(x,y,z).e ‘a~r

}

+ PO(.LY,ZJ)
j. 1

(2)

where a superposed - denotes the’finite element approximation of the cormponding quantity
in Equation (1).

Subtracting Equation (2) from Equation (1) will give an expression for the error on the FE-
approximation of the exact solution. The expression which results (where x,y and z have been
omitted for clarity) is:

{

.

)}p(t) - ~(t)=Re ~ (ajpje ‘~r - Ej@je‘~’ + PO(4- PO(O
j=l

(3)

The format of Equation (3) suggests that there are four possible sources of error - namely the
errors on aj, O}PJX,Y,Z)and po(x,y,z,t). Of these, all but the error on the real part of tij are
neglected, since this error is judged to have by far the most significant effect on the dispersion
error. The reasoning behind this postulation is as follows:

The errors on ~ and pO(X,y,Z,t)do not give rise to dispersion error because the quantities ex-
press the initial conditions and excitation whereas the predicted speed of sound in the model is
independent of initial conditions and excitation, The imaginary part of @jinfluences only the
decay rate of the response, so an error on it could not possibly give rise to dispersion.

The reason why the error on p~x,y,z) is not judged to influence the dispersion error can be ex-
plained with the aid of the fundamental wave identity c=~~(where c is the speed of sound, ~is
the frequency and 2 is the wave length). Using this it can be seen that any error on the speed



of sound can be expre-
ssed as a combination
of an error on frequen-
cy and an error on
wavelength. When
looking at errors on the
eigenmode p~x,y,z),
they can not readily be
interpreted as either of
these. An example of
an eigenmode predicted
with FEM is shown in
Figure 1.

On the whole, one can
not really say that there
is an error on the wave
length in Figure 1,
whereas the error on
the real part of @j is
over 20%.

Figure 1: The eighth non-trivial eigen mode in a 10m
long hurd l-dimensional cavity calculated
analytically and using an FE-model consisting often
linear elements. Note thut the error cannot be
described as an overall error on wavelength.

Neglecting all errors except the error on the real part of @jreduces Equation (3) to

(4)

where @jis the real part of or

Equation (4) shows that the error only can be large ~Q..~,~hase error (t+.q)t is considerable
and if the corresponding modal participation ajpje ~ is significant. Figure 2 illustrates
this error by showing three functions that only differ in the frequency of the highest harmonic
component.

Figure 2 clearly shows that the largest deviations occur at the times when the phase error is
around n, but considerable errors are also present at other times, except when the phase error
is close to zero. To get an acceptable solution, one must therefore demand that the phase error
be less than a certain value for all frequency components that participate significantly in the
solution.

The accuracy criterion is therefore as follows:
For all modes that participate significantly in the solution, it must be demanded that

wheres is the maximum acceptable phase error.

(5)

Equation (5) is remarkably simple, which has the advantage of giving the engineer using it the
opportunity to understand it. Another advantage of Equation (5) is that it is easy to evaluate a



priori (see the next
section). Before
using the error
estimator however,
one should be
aware that it
requires a certain
amount of
engineering
judgement to use it
- Identi@ing which
modes are
significant and se-
lecting the value of
E cannot be done
objectively. The
authors short expe-
rience with this
formula indicates

2

1.5

1

0.5

0

-0.5

I

r’t
I

o.5-o.i5*cos(y :3 0s(2’;)-0.17*CO:(3”X)—
o.5-o.85*cos(x)..Q.5h ..2*X)-O.17*COS(3.WX)---

0.5-O.85*co~)+0.5*@(2*x)-O.17*cos(4*x)------1

/

,
./

:1
;/
.1..’/

:1
... /

~li.../
.1

,.,
.:

.

\

\ ,..
\ ..,.
\ ..

,.,

\’.’,
\’..

‘\*
‘.\
‘. \
‘. \
‘...\
.. \
,\

\ !/./,
J............................ ............’....

.....-Hf

. . . . . . . . . ... .\ ..” ‘
....~.. ,~’~-- I

I I 1 I I I I I
0 1 2 4 5 6

Ti?neIs
Figure 2: Afinction with diflerent degrees of distortion
on the highest frequency component. Illustrates the efect
of phase errorsfiom error on frequency.

that setting *n/10 gives a high degree of accuracy, whereas selecting *rc/3 gives a modest
degree of accuracy. The example later in the paper demonstrates how to identify significant
eigenmodes.

APPLICATION TO FEM

The accuracy criterion (Equation (5)) can be used on many time domain FE-calculation strate-
gies. Two of the most useful of these shall be treated here: The frst is ordinary finite elements
(see e.g. Huebner [2]) with consistent mass matrix using the trapezoidal rule to discretise the
time domain, the second is special Lagrange elements with lumped mass matrix (see Jensen
[3]) using the central difference method to discretise the time domain. In both cases, the total
error is approximately equal to the sum of the error due to the time discretisation and the error
due to the spatial FE-discretisation. Good reliable expressions for both error types are very
common in the literature (e.g. Hughes [4] and Strang & Fix [5]). The following two express-
ions are given in Jensen [1]:

[1h@
Oj-dj = k 0.

2ncl@. JJ

12/7- 1 &)2@j-&j = Oj 24 (q

(6)

(7)

where h is the element side length, c is the speed of sound, At is the time step size and p is the
order of complete polynomial in the element shape function. k is a constant that depends on
element type (partially tabulated in reference [1]) and P is equal to % for the trapezoidal rule
and Ofor the central difference method. Naturally, Equation (6) is the error due to the spatial
discretisation whereas Equation (7) is the error due to the time discretisation.



To test whether the accuracy criterion is fulfilled, it would seem logical to insert Equations (6)
and (7) into Equation (5) for all eigenmodes. This would however be too cumbersome, and
because the two errors tend to cancel one another, it would also give unreliable answers. It is
therefore a better idea to test whether the two errors meet the criterion individually - This
would certainly be on the safe side and would only need to be done for the highest significant
frequency component.

Inserting Equations (6) and (7) individually into Equation (5) and solving for At and h yields:

()

II*

h<!

f lkl;2nf

(8)

At < J 3E p#+
l12p-lp’Tf’ ‘

where T is the total duration of the solution and f=~i/2n for the eigenmode with the highest
flequency that still is significant.

.

NUMERICAL EXAMPLE

The geometry of the prob-
lem is shown in Figure 3. It
is a cubic cavity (Ocx<9m, ‘L
(kyc%n and Ocze%n) with
a linear acoustic medium
with density p=l.2 kg/m3
and speed of sound
c=360 nis. All boundaries
are hard. The excitation is a
stiff square piston (x=O,
0cye3m and 0czc3m) with
the acceleration given in
Equation (9). A plot of the 3m
function is shown in Figure !@_
4 (it is one period of a sine .

I

9m

function weighted with a
A 4 u

Harming function). Figure 5
3m 6m

shows its amplitude spec- Figure 3: The geome~ of the example

trum. problem.

[

sin2(X;) sin(27c~) tG[o,tA]
a(t) = A A , tA=;s (9)

o t@[o,tA]
Dividing the piston into 64 squares of equal size, approximating each by a point source at its
centre and calculating the response using image sources gives a solution that is visually indis-
tinguishable from the exact mathematical solution. This shall be referred to as the analytical



solution.

Two finite element
solutions based on
the accuracy crite-
rion are calculated:
The fwst uses 20-
noded serendipity
elements with con-
sistent mass matrix
and the trapezoidal
rule, whereas the
second uses 27-
noded Lagrange
elements with lum-
ped mass matrix
and the central dif-
ference method.

The maximum fre-
quency is obtained
by assuming that,
for the purposes of
estimating accura-
cy, the amplitude
spectrum at any
receiver position
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Figure 5: Amplitude spectrum of the excitation finction.

can be approximated by the amplitude spectrum of the excitation (Figure 5). On the basis of
this, a value of fM=95 Hz seems reasonable. If one furthermore concentrates on calculating
the solution up to
T=O.08Sand uses
e=n/ 10, Equation
(8) yields h< 1.01 m
and zlt<O.47 ms for
the trapezoidal rule
and hsO.789 m and
kO.66 ms for the
central difference
method. In order to
fit the geometry,
the element side
lengths are rounded
down to h=l m and
h=O.75 m respec-
tively. (The const-
ants p and k were
obtained Ilom
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Figure 6: The response at (9,0,0) calculated using an
analytical method and FEM using two diflerent time
integration algorithms.



Jensen [1] - k==-1.3
for the 20-noded
serendipity ele-
ment, k=3.5 for the
27-noded Lagrange
element and p-2 in
both cases)

The response at
(9,0,0) is shown in
Figure 6, while the
response at (9,9,0)
is shown in Figure
7.

Figures 6 and 7
both show that
both FEM strate-
gies give good res-
ults and this is also
the case for every
receiver position
that has been tried.
The amplitude spe-
ctra of the curves
in Figures 6 and 7
are shown in Figure
8.

Figure 8 clearly
shows that the fre-
quency content in
general is lower
thin in the excita-
tion (Figure 5). This
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Figure 7: The response at (9,9,0) predicted with an
analytical method and using FEM with two diferent time
integration algorithms.
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Figure 8: Amplitude spectrum of thejirst part of the
response predicted with the central diference method at
two diflerent points.

means that the FEM predictions are even more accurate than the a priori
estimate predicted and one might therefore even be able to trust the prediction for fi80 ms.
Figure 8 also shows that the frequency at (9,9,0) is lower than at (9,0,0), which explains why
the FEM prediction at (9,9,0) is more accurate than at (9,0,0).

In Figure 9, the solution at (9,0,0) with and without use of the accuracy criterion are com-
pared. The solution without use of the accuracy criterion was calculated using linear elements
with consistent mass matrix and the trapezoidal rule. The element size was six elements per
wavelength (a common rule of thumb), while ten time steps were used per oscillation period.
Using a frequency of 95 Hz, this yields h<O.63mand At< 1 ms, allowing a grid of 15x15x15
elements.

Figure 9 shows that the solution obtained without the accuracy criterion also is reasonably



accurate, but is
seen to deteriorate
with time. The new
discretisation metho-
d does not suffer
from this weakness.
Both methods pro-
duce more accurate
results than norm-
aly can expected
because of the
error cancellation
mentioned in the
previous section
and because (as can
be seen from
Figure 8) the
maximum signi-
ficant frequency
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Figure 9: The response at (9,0,0) predicted by an
analytical method and using FE-models based on two
diflerent discretisation principles.

really is 75 Hz rather than the 95 Hz horn the initial estimate.

CONCLUSION

An accuracy criterion that is based on sound scientific reasoning has been presented. This has
then been combined with an a priori error estimator yielding a method for discretising time
domain FE-calculations. The use of this method has been demonstrated in a simple example
and the results compared with analytical calculations. The method performed well on this
example, as the solution calculated on the basis of it had acceptable accuracy. The same
example was also calculated using an FE-model based on commonly used rules of thumb and
this produced significantly poorer results.

The new error estimator is also fairly easy to use, so if further experience shows that this
example is typical of the difference between the two methods of mesh design, then the new
method should be used for mesh design when high accuracy is important.
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