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Some experiments on populations of industrially identical structures have

shown a large variation of their vibroacoustic behaviour. They indicates that small

structural defects can lead to strong differences on vibration and acoustic radiation

properties. This problem is presently important for automotive industry, because it

leads to a non negligible percentage of cars that have acoustic problems.

The phenomenon was also theorically shown on populations of coupled plates

having small defects in their junction angle; and was called hypersensitivity. The

explanation of such behaviour is a very strong change in the coupling of flexural and

in plane motions, when the angle of connection vary. However, the phenomenon

only exist for quasi flat junctions.

An experiment made on real body parts of car is presented to demonstrate

that small geometric imperfections due to the process of assembling substructures,

produce the hypersensitivity phenomenon.

The experiment was based on mobility measurements. We started with simple
parts then coupled together in order to build a population of complex structures. It is

then possible to’ see, at what level of the process of building cars the dispersion

appears. The end of the paper is devoted to a theoretical approach of non perfectly

described structures. We present how the uncertainty on the equation of motion.

characterized through a residual energy, is related to the uncertain y on vibration

response.



INTRODUCTION

When manufacturing cars, planes, machinery, etc..., it generally happens that

a part of the production has poor vibroacoustic properties compared to the standard

production. This is presently a big problem in industry and it seems necessary first

to understand the physical reasons of the dispersion of acoustic behaviour, then to

predict it. This phenomenon was shown by KOMPELLA and BERNHARD in the

case of transfer function in cars.

Industrial structures are constructed from the assemblage of substructures,

and one possible explanation of the dispersion is the accumulation of small defects in

the substructures and in the junctions that produce finally ~ big u~certainty..

However this explanation seems not sufficient because, the vibrations and

acoustic radiation of simple structures can be also, very difficult to predict. The

hypersensitivity phenomenon was theoretically demonstrated on coupled plate by

REBILLARD and GUYADER. A brief description of the phenomenon will be

presented in the paper, it is related to the coupling of transverse and in plane

motions, and appears with small defects of the angle of junction, when the angle of

junction is around 50. This suggest that the basic source of dispersion of

vibroacoustic properties can be due to the hypersensitivity of one structure in the

total assembly.

In order to demonstrate the reality of this explanation of observed dispersion

on cars acoustic properties, an experiment was carried out on uncoupled parts of a

car, that was then assembled. These experiments are presented in the paper.

The final part, and the more difficult, is the calculation of bounds of variation

for vibrations of such structures having defects. An introduction to a possible

approach based on the vibrations of imperfectly described structures will be

presented.

THE HYPERSENSITMTY PHENOMENON

For a detailed presentation one can read the original papers of REBILLARD

GUYADER. Here just a brief description will be given.

The structure under study is constructed from several thin isotropic plates of
the same thickness and width but of different lengths, connected along the widths at

any angles. All the plates are simply supported on the lateral sides. The structure is

excited by a pure tone force. A four plates example is shown in figure (1).



The basic result is presented in figure (2), where the transfer mobility of a

population of two coupled plates are plotted. As one can see, even if the structures

are very’ close; big differences appear in their nobilities, mainly because peaks and

anti peaks are shifted. Let us also notice that the differences of behaviour can be

observed also on the phase of the nobilities see figure (3).

Figure 1. (a) A whole structure with four identical plates : (b) a particular plate of

structure. a = 0.4 m, 1= 0.5 m, h=2x10-3 m, E=2.1x1O” Nm”2,
v=0.28. q= 10-2.

P=7.85 x103 kgm”:,
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Figure 2 Modulus of transfer mobility; plate geometry as Figure 1. Connection angle

4 + c’ where s follows a Gaussian distribution (mean value 0°, standard deviation

1“).Driving force on the first plate at x = 0.3, ~ = 0.17 Response on the second plate at
X= O.3, y=o.17.

The phenomenon of hypersensitivity appears for connection angles between

plate around 40, and does not exist when the angle of connection is bigger. The

explanation is related to the coupling of transverse and is plane motions that vary

rapidly with the connection angle when around 40. This significate that quasi flat

structure can behave very differently, when small geometrical defects appear.
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Figure 3 Phase of transfer mobility for the same case as Figure 2.

Let us now study a more complicated structure, namely eighteen coupled

plates where the driving force is on the first plate for a complete information see

REBILLARD and GUYADER.

The control parameter is the transfer mobility between the driving force point

and the middle of each plate, however to make trends to appear we are going to

average this quantity over frequency.

Let us consider two structures. The first one is the lattice without defect and

the second one has a defect. For each plate of the altered structure is defined the

relative error on the transfer mobility modulus at a fixed frequency.

,,(@,=JpF(y{-’@q

where i is the receiving plate index and j the excited plate index, Y_(co)is the transfer

mobility modulus for the reference structure without defect and y,,(0) the transfer

mobility modulus for altered one. To make trends to appear, the observation
particular frequency is not convenient, then we propose an average over frequency

smooth the phenomenon, We define a mean all over the angular frequency band A :

Where ~c is the center of the frequency band.

As one can see in figure (4) each time an hypersensitive junction appears

the transmission path the transfer mobility presents more and more dispersion,
indicated by increasing values of (Er,)..
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Thus, one important thing in the hypersensitivity phenomenon, is associated

to the propagation of hypersensitivity in coupled plates. When several plates are

coupled, if one junction is hypersensitive, the transfer mobility display

hypersensitivity if the transmission path from excitation point to measurement one

include the hypersensitive junction. Thus, in complicated structures,

of hypersensitive behaviour is strong, as it is sufficient that one

substructure is involved in the transmission path.
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Figure 4. Effects of some angular defects of 1 degree applied to a lattice of

eighteen plates coupled with an angle of 4 degrees. One angular defect : on the first

connection (solid line), two : on the first and on the sixth connections (dashed line),

three : on the first, on the sixth and on the twelfth connection (dooted line).

EXPERIMENTAL RESULTS

In order to verifi how small geometrical defects can introduce vibrations

differences. An experiment was made on real automobile parts see FRADET. 12

heating walls and 10 fue walls were first collected from the production line in order

to see how simple elements can behave differently. Figure (5) presents the amplitude

of transfer mobility measured for “same” excitation and measurements points on the

12 different heating walls. Figure (6) presents similar results for the 10 different fire
walls. ,.

As one can see some differences appear, they are mainly due to structural

defects, even if the measurement process it self, is also responsible for differences in

the amplitude of mobility. Uncertainty due to the measurement was studied making

at several different time the “same” experiment on one structure. The result not
presented here demonstrate that the spectra of the amplitude of mobility have
differences much smaller than in figure (6).



The coupling between the two set of substructures was then realised. in a

way looking like the real procedure using robots. The two parts where maintained

with a longitudinal force, during the spot welding operation.

During the real spot welding process the longitudinal force is not controlled

pnd thus it results in coupled substructures having geometrical small defects. This

result in a big difference of the vibroacoustic behaviour of the population of coupled

structures as demonstrated in figure (7), where the transfer mobility from a point of a

substructure to one point of the other substructure is presented.
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Figure 5. Transfer mobility of 12 heating walls measured in same conditions.
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Figure 6. Transfer mobility of 10 fire walls measured in same conditions.

As conclusion, one can say that the uncertainty of vibroacoustic behaviour of

real car structures are for one part, related to the uncertainty in the spot welding

process. Even if the coupled structures have very close geometrical shapes. they

behave differently. The reason for this is probably related to the coupling of

transverse and in plane motions, as it was theoretically demonstrated for plate

coupling.
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Figure 7. Transfer mobility from one point on the heating wall to a point on the fire

wall.

However, other causes are involved in the different behaviors of population

of cars structures. A more simple phenomenon can arise due to the heterogeneity of

cars structures. In particular, on the location where the engine is connected to the car

structure, the input mobility vary strongly when the input point location is slightly

changed. The figure (8) presents the amplitude of the input mobility when the imput

point is located in a circle of one centimeter diameter. This is obviously due to the
presence of stiffeners, near the location where the engine is connected. Let us also

remember that in this put mobility is important because it controls the power

injection from the engine to the structure that finally produce the noise in the car.
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Figure 8. Amplitude of in put nobilities measured on the coupling point with the

engine. Influence of small variation of the impact point.



A THEORETICAL MODELISATION OF THE EFFECT OF
UNCERTAINTY

In order to make predictions one needs a mathematical model that represent

the theoretical object under study, in general it is the mean structure of the

population , Let us, to simplifj, consider the case of the longitudinal vibration of a

rod clamped at one end and driven by a harmonic force of angular frequency Q. at the

other end.

The mean structure is taken as an homogeneous rod, that has a unique

solution (U(x), R(X)) satis~ing the following equations.

—

+f-l*jiu(x)+ ~(x)=o (1)

—

R(x) = R(1+ jq) y(x) (~)

u(o) = o (3)

R(L) = F (4)

Where U(X) is the amplitude of the longitudinal displacement and N(x) is the

amplitude of the longitudinal force, ~ and R are respectively the mass per unit length

and the longitudinal stiffness of the rod, F is the driving force amplitude and q is the
damping loss factor.

Let us assume, the real structures, of the population have imperfections that
introduce heterogeneities on p(x) and T(x). In that case the actual solution (u(.Y).N(.~))

satis~ the equations :

Q*/J(x) u(x)+ &)= o - (5)

N(x) = K(x)(l + jq) ~(.r) (6)

u(o) = o

N(L) = F

(7)

(8)



The predictions are made on the mean structure and one calculate (U(X),R(.~)):

from the knowledge of this solution, is it possible to have some indications on the

behaviour of all the actual solutions (u(x), N(x))?.

Of course one can make a lot of calculations for different distributions of mass
and stiffness uncertainty but this is quite impossible in real case due to the amount of
calculation. There is another possibility based on residual energy calculation, that is
presented in the following.

Let us first introduce the kinetic energies of the mean problem solution T(U(X))

and of the actual solution, T(U(X)) :

The first energy has no reality because it takes into account the solution of the
mean problem but, the mass density of the actual rod, however it can be easily
calculated because U(X) is unique.

The second energy is the real one for a given rod of the population, but it is
difficult to calculate, as U(x) is unknown.

Is there any relation between these quantities T(u(x)) and T(U(,T))? To answer

this question let us remark that (U(x), N(X)) is an a approximate solution of problem

(5)- (8) (because of heterogeneity) and thus;

+d/J(X) O(X)+ d(~(x)) = &(X) x G]0,L[ (9)
—

ii(x) - K(x)(l + jq)%(x) = (9(x) x G]0,L[ (10)

For sake of simplicity we assume that the same loss factor q and boundary
conditions remains verified by the mean structure problem and the actual problems.

The interpretation of (9), (10), is that the equations are not exactly verified and
thus the second member is not equal to zero but to values &(x) and 6(x) that are small if

(U(X),N(X))is a good approximation of the actual solution (uRN). Let us introduce
the energy associated to the residual terms E(X) and 6(x) in the form:

1 l&(x)[2 \e(x)12
@@(X),N(x)) = fom+K(x)(l + ~’)dx (11)

It can be interpreted as a residual energy due to the approximate verification of
equations (5) and (6): It reduces to zero when-~hey are exact(y-verified.

We are now ready to remember the result demonstrated in paper
GUYADER.
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where

[

r=p’ ~-@X+la-l-j~f 2
1

(13)

f?= O/Q, where co is the nearest Eigen angular frequency (of the

considered rod of the population) to Q and:

~= 2+jq+rf
p’(l+q’)+1

This relation allows one to bound the actual kinetic energy of one rod of the
population from the knowledge of the mean structu~e respopse (URN).

In fact the function r, amplifies the effect of the approximation. When the
fimction r is small the bounds are large.

As presented in GUYADER one can see that r is minimum when Q = o and is
equal to q.

When the driving frequency is not located on a resonance frequency the bounds
are considerably reduced, unfortunately, unfortunately the resonance angular
frequencies of the considered rod are unknown and thus, one has to take into account
the case worst to calculate the bounds, that is to say.

(14)

This relation is very realistic and means that the energies of industrially
identical structures having light damping can have large fluctuations when different
structures of the population are considered.

Let us now show an example. The solution for the mean structure problem is
well known, and one can get.

Sin kx
U(x)=. F —

K(1+ jq) CO.SM

~ Cos kx
N(x) = — —

(1+;q) Cos kL
,-

(15)

(16)

r—
where k=Q _ p

K(I + jq)

Let us suppose that the uncertainty come from a constant lineic mass defect ,
m, of length 2A located at point XO.

/f(x) =p+nl ifx~]xo-A,xo+A[

p(x) = ~ if x @]X()– A,x,),A[



Then using solutions (15) and (16), one can calculate E(X) and 9(x) with (9)
and (10). After calculation one obtains :

e(x)=o

(o ifxg]xO– A,xo+A[
&(x)=

Q’mG(x) if x G]X()– A,.Y,)+ A[

The residual energy (11) can then be easily calculated

(17)

On can also calculate the kinetic energy associated to.the solution U(Z) :

T(G(x)) = S2’~~~l~(x)12dx+ fhz~;;~~~(.r)l’dr (18)

With these two expressions one can easily calculate the bounds of kinetic

energy associated to mass defect, using (14).

CONCLUSION

The calculation of the vibroacoustics of a mean structure to represent the

behaviour of a population of structures is not sufficient for a lot of problems where

the dispersion is important.

In this paper the hypersensitivity phenomenon has been experimentally

shown on real cars structures, and the spot welding process is responsible for one

part of the dispersion in the vibraocoustic behaviour of cars.

In order the control the dispersion, bounds of energy related to structural

defects can be established, using the concept of residual energy.
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