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ABSTFUCT

Mechanisms comprising oscillating components have important engineering applications.
These systems are often based on forced oscillatory motion of vital elements. Solid surfaces,
involved in dynamic contact, almost always experience sliding and wear along the active
interface. This effect becomes extremely significant in mechanisms designed to perform
multiple automatic motions. The recursive motion, intended to follow a precise kinematic
pattern, ultimately shows adverse deviations. Engineering technologies developed to combat
these deviations, e.g. the hardfacing, need the appropriate criteria to evaluate the maintenance
economy. In addition to geometric degradation, the disadvantageous vibrations occur as the
result of growing dissipative forces. The number of material attributes, e.g. the elastic
moduli, can significantly change with the sliding distance. Presently, the theory of
kinematics does not provide complete models for sliding distance for rolling-sliding contact.
Currently, the fundamental concepts of circular motion and oscillations are presented
without addressing this important aspect of the motion gradient with respect to contacting
surfaces. This paper presents the mathematical derivation of the general case of interracial
motion. The presented kinematic relations are important for large class of dynamic systems
that comprise interracial motion, e.g. rail-wheel contact. Reference is made to practical cases
where the proposed model can be applied.



1. INTRODUCTION

Motion can be observed only with respect to certain reference. For the large family of
systems, involving dynamic contact of solids, the convenient reference for motion of some
observed point is the opposing contacting surface. As long as the contacting solids mutually
slide, there is a coherence within the observed system. Both surfaces maintain the general
courses of their motion by sacrificing relatively thin surface layers. To ease this perception,
we highlight a collision of solids as an opposite situation. Collision causes the elastic
repulsion (ie a significant change in motion tensor), plastic deformation, fracture, or decay,
depending on the time - space scale of the observation. Yet another option is joining the
aggregates into completely modified consolidations (eg by friction welding).

The most harmonic case - sliding of solid surfaces - relies on interracial motion. Ideally,

interracial motion of solids can be realised via pure rolling or pure sliding, involving only
elastic deformation. However growing evidence shows that rotary contact of solid systems
always involves sliding, which in turn involves permanent deformation (deterioration).

We observe one familiar example of oscillatory motion - somewhat idealised - rolling the
wheels on horizontal rails. If there was no external force, the wheel would cease rolling,
following the law of darnping oscillations. Dissipative forces will damp the harmonic
oscillations (rotations) of the wheel, as time goes on. However, if the oscillations are forced
to continue with a constant amplitude due to a contributing power engine, the resulting
process is an antagonism between the darnping and driving forces that significantly affects
the surface layers. Degradation of surface material occurs causing the changes in
attributes. Familiar mechanisms in this situation are material fatigue and wear.

Figures 1 -3 present a magnification of a contact zone at the intermediate stage
history of a solid of revolution engaged in rolling-sliding contact:

material

of wear

Fig 1: Surface of an Adarnite roll sample exposed for 3 minutes to rolling-sliding contact at

normal force F = 200 N and sliding velocity U = 0.25 m/s; surface temperature: 800 oC; [1]



Fig 2: The same sample as in Fig. 1: SEM micrograph of wear track topography - a normal
view on the worn surface; hard carbide presents obvious barrier to sliding [1]
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Fig. 3: The same sample as in Fig. 1; wear track profile exhibiting the surface texture [1]

The above figures 1-3 indicate that, during the rolling-sliding, the contact layers significantly
depart from an ideal of a homogeneous, isotropic and continuous solid surface.

Archard’s law, one of the fundamental relations in selection of engineering materials, is
formulated by Eq (1) describing several principal factors affecting wear of solid surfaces:

WA# =KPH-l .................................................................................................................(l)



where W = wear rate, ie lost volume per unit distance slid; A~ = area of the instantaneous
contact; K= Archard wear constant; p = normal pressure; H = hardness of the worn material

The intuitive perceptions and engineering definitions for all the above variables seem to be
commonly shared. Yet, a more detailed analysis of the term “distance slid” will show that
there is insufficient understanding of this notion for the case of rolling-sliding contact.

Mechanisms comprising oscillating components are amongst the important engineering
applications, eg gears, shafts, cams, ball joints, rail-wheel systems and rolling mill rolls.
These configurations often exhibit increasingly forced vibrations during the exploitation.
Solid surfaces involved in dynamic contact almost inevitably experience sliding and wear.
This effect becomes extremely significant in mechanisms designed to perform multiple
automatic motions, eg in robots. The recursive motion intended to follow a precise kinematic
pattern ultimately shows adverse deviation. The advanced technologies developed to combat
these deviations, eg hardfacing, need the appropriate criteria. In addition to geometric
degradation, the disadvantageous vibrations readily occur due to dissipative forces caused by
friction. The whole range of material attributes eg darnping capacity and elastic moduli can
significantly change with the sliding distance, due to degradation of surface layers.

Presently, the stock of knowledge describing the kinematics, does not provide models for
sliding distance even for most basic cases of interracial motion, eg in rolling-sliding contact.
The fundamental concepts of circular motion and oscillations are presented without
addressing important aspects of the motion gradient with respect to contacting surfaces.
Models of oscillatory motion should be complemented by interracial kinematics to enable
analysis of the changes in tangential force, material attributes and contact geometry, with
sliding distance. The changes in the above listed variables will affect the dynamic stability
of oscillating system causing further nuisances, eg the noise.

This paper presents the mathematical derivation of the general case of interracial motion. A
reference is made to selected practical cases where the proposed model can be applied using
an interdisciplinary strategy. The new presented kinematic relations are important for the
large class of dynamic systems that comprise significant components of interracial motion.

Rail-wheel contact can be observed as an exemplary oscillatory system. The problems of
vibrations and wear in rail-wheel contact are the objects of vigorous research [2-7]. Serious
nuisances occur when this system is disturbed from ideal harmonic oscillations. To analyse
and control the wheel-rail contact mechanics, the known models should be complemented
with relations that define fi.u-ther significant relations. It has been widely recognised that the
phenomena that are pertinent to oscillatory motion, eg material fatigue and acoustic noise,
depend on the attributes of contacting layers. Relations involving effects of mechanical
energy, problems involving elastic response, vibrations, and firther aspects of the mechanics
of solids, were derived under the assumptions of isotropic, continuous and homogeneous
material. These assumptions do not satis~ even the static systems, ie solids are intrinsically
anisotropic and heterogeneous objects, yet, more importantly, the attributes of solids change
as the contact processes advance.

Apart from nominal stress and its amplitude, the typical measures for oscillatory systems are
frequency and the cumulative number of the oscillations. For example, the resistance to
fatigue of a system undergoing apparently harmonic oscillations, is usually measured with
respect to the number of oscillations. However it has been shown [5,8] that resistance to



fatigue depends also on the sliding distance. Elastic moduli and Poisson’s ratio change not
only with the contact temperature, but also with contact pressure [9] and with the anisotropy
developed in the surface layers. All the above listed features depend on contact kinematics.
Our ability to predict the behaviour of materials under dynamic stress, by means of theories
of elasticity, decreases with the viability of the assumption that we are dealing with
continuos, isotropic and homogeneous solids [9]. In the above highlighted rail-wheel system,
undergoing the forced oscillations, we can observe how the equilibrium, maintained by
driving forces, decays with the sliding distance. One of the basic equations of oscillatory
motion is

8=0.5k A2 ...........................................................................................................................(2)

where c = energy of simple harmonic motion; k = force constant of the spring, that depends

on the stiffens of the oscillating solid; A = amplitude.

Numerous papers treat the equations of motion involved in rail-wheel dynamics [2-7].
However, both experimental runs and real systems show many unsolved problems. Rail and
wheel bear the effects of a multitude of the material attributes. In addition, the oscillatory
motion of the wheel is affected by geometric properties of the contacting surfaces, eg
roughness. Parameter k changes with surface temperature, ie with both the number of
oscillations and sliding distance, because materials in surface layers experience physical and
chemical changes as rolling-sliding contact continues. Competent engineering analyses of
oscillatory systems that involve rolling-sliding contact require taking into account the above
described phenomena. Testing and development of materials intended for rotary components
can be futile, and corresponding inferences can be misleading if these important aspects of
rolling-sliding contact are ignored.

2. DERIVATION

We focus on a special class of motion coplanar to a three-dimensional surface, so called
interracial motion. It should be noted that motion, by definition, can be observed only with
respect to a certain reference object. For the large fhrnily of systems, the most convenient
reference is the contacting surface. Observe the interface between two consolidated matter
aggregates ~ and P such that the difference in the surface motion tensors satisfies relation

191+ IPI # o ...........................................................................................................................(3)

g = motion tensor of points coplanar to contact surface delimiting the aggregate 5

p = motion tensor of points coplanar to contact surface delimiting the aggregate Y

Assume that only the extreme points Gi on the surface of the aggregate ~ collide with the

extreme points on the picks of the counter-surface. Furthermore, only one point, denoted by
P, belonging to ~, will be observed during its collision with a series of counter-points Gi.

The whole dynamic system can be simplified as follows [1]: Assume that the point P moves
from a position Xl via X2 and X3 to a position X4 with the constant velocity Vp, and that

points G1 ,G2,...,Gi,...,GK move along a line XaXb with the constant velocity VG see Fig. 4:
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Fig. 4: Geometrical representation of the configurations of the points P and Gi

Note that in Fig. 4, the following conventions are assumed: the fixed positions (locations) are
denoted by the symbol X. The locations denoted by X do not change their relative positions,
while the points P and Gi can move only once from one to a subsequent location. Then, the

time ~s needed for point P to move from the location X2 to location X3 is equal to

~s = (X3-X2)/vp ...................................................................................................................(4)

Assume that the total number K of the points Gi is infinite, the distance 8 between two

neighboring points Gi is constant, and that the vertical distance s between the point P and

line XaXb is equal to zero when point P is traveling between the locations X2 and X3,

while &>Owhen P is outside the interval X2X3. In addition, let the following conditions be

satisfied: Denote by Gk and Gk+l the two points which are the closest to the point P at the

moment when P is at X2. If Vp= VG, the distance between P and Gi will remain constant

during the time ~s. On the other hand, if IVP-VGI>0, during the time d~, there are two

possible situations (Fig. 5):

1) Vp > VG : the horizontal distance between P and Gk+l increases by dx, or

“ 2) Vp < VG : the horizontal distance between P and Gk increases by dx.

For ~ = O it holds:

dx ‘lVp-V(j d~ ........................................................................................................................(5)
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Fig. 5: Positions of the points P, Q and Gk+l

By integrating Eq. (5) in the interval ~ = O .... z = ~s it can be obtained:



Ax ‘IVP-VG[ T~ .......................................................................................................................(6)

If ~~ is substituted using Eq. (4), then Eq. (6) can be rewritten as follows:

Ax ‘]Vp-vGl (x3-x2)/vp ........................................................................................................(7)

Distance Ax will be called the sliding distance of the point P. In a more general case, the
arguments of Eq. (7) can vary with a number of factors. Consider a series of points Pi

belonging to a continuous surface, colliding subsequently with points Gi. A curvilinear

contact is considered instead a linear contact. If we denote: L = sliding distance of point Pi,

s = deformation zone (contact) curve length, eg, s = X3-X2, U = sliding velocity, eg,

U = IVP-VG[,then, Eq. (7) can be written as:

a~ 32
“%,= 0

......................................................... (8)

where c is a component allowing for interdependence of attributes L, s, U and Vp. Generally:

c = dg, p, t ~Ty) ...........................................................................................(9)

where: g and p = motion tensors of surfaces G and P respectively; f = frequency of the
oscillations, ~~ = total (cumulative) time of oscillations, y = stochastic component.

In real systems, factors U, Vp, VG ands can vary significantly. For example, the diameters of

solids of revolution change due to wear which affects their peripheral velocities; the contact
length changes with mechanical properties, eg as influenced by temperature, etc.

A range of authors [1,10-12] have pointed out that micro-sliding phenomena occur along the
contact zone. In some practical situations these phenomena can be neglected, but some cases
of rolling-sliding contact are characterised by high variation of sliding velocity along the
interface eg the deformation zone in the roll gap developed during plastic forming by rolling.
By introducing propitious simplifications, we can modi~ Eq. (8) to enable approximate
solution, ie:

dL/ds +C dU/dvp = O ...........................................................................................................(lo)

When a series of simplifications is assumed and taking into account that most systems can be
observed within the closed routes, it can be written c = N (ie each point Pi passes the interval

X2-X3 N times under the same conditions), and a first approximate solution of Eq. (8) is:

L= NsU/vp ....................................................................................................................(n)

It seems that, in real applications, the above defined relations are subject to significant
stochastic interactions, thus appropriate physical simulations are recommended before
relying on the above deterministic models.



3. APPLICATION

The rolling-sliding phenomena are present in a wide range of engineering applications;
Figure 6 presents a schematic of various rolling sliding configurations.
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Figure 6: Schematic of various rolling-sliding configurations

The implications of the model defined by Eq. (8) can be projected into several fields of
science and engineering eg:
- tribology: two-discs, configured as shown in case A in Fig 6, rub each other along the
distances defined by the Eq (8); wear rate occurring during the simulation of rolling-sliding
contact cannot be evaluated without understanding the kinematics of the interracial motion.
The presented concept of interracial motion can eg be used to evaluate validity of Hertzian
models in contact mechanics
- rail-wheel systems (case B shown in Fig 6): the oscillations and wear phenomena within
the rail-wheel cotilgurations are significantly affected by kinematics corresponding to Eq (8)
- solid mechanisms: cams, gears and bearings (cases C - F) operate in accordance to laws of
interracial (rotary) motion; without relations defined by Eq (8), only rough approximations
can be made regarding the reliability of this fwily of mechanisms

abrasive grinding of the solids of revolution (case F, Fig. 6): Equation (8) allows for
derivation of more adequate norm for evaluating the performance of the abrasive disc, thus
enabling more reliable optimisation of grinding operations; the control of vibrations during
grinding is beneficial for process performance (eg quality of product, grinding wheel life)
- plastic forming by rolling: Equation (8) allows for derivation of the more adequate norm of
roll life, and thus the better understanding of further factors influencing the process
performance; the adverse vibrations during plastic forming by rolling are detrimental for
both process and equipment; the corresponding noise is a serious health hazard
- vibrations: Eq (8) can be applied on various types of recurrent motion; the change of
friction with sliding distance affects significantly whole range of phenomena, eg the noise

generated by this class of systems.

More detailed algorithms describing effects and interactions within each of the above cases
can be developed as innovative contributions to relevant technologies. The important aspect
of the above class of systems is the contact (sliding) distance where the transfer of matter and
energy takes place. For many of the above discussed systems, this aspect can be simulated
using two-disc tribometers. From the viewpoint of tribology (and materials engineering),



wear rate is a crucial norm that is used to compare various materials via two-disc simulation.
A number of authors [14,15] agree that the wear rate WL should be expressed as follows:

wL = AWL ...............................................................................................(l2)

where: AR= radial wear (depth of the worn layer); L = rolling-sliding distance.

The recursive motion, designed to follow a precise kinematic model, ultimately shows
disadvantageous deviations. In addition to geometric degradation, the distressing vibrations
occur as the result of developing dissipative forces. These nuisances can be suppressed
efficiently only if we are able to define their quantitative changes with sliding distance.

Generally, the external forces applied to oscillating systems to suppress damping
oscillations, create a motion that does not decay with time. The energy lost to fi-iction,
deformation, heating, etc, is replaced, over the course of each cycle, by the driving force. The
kinematics involved in compensating for the energy lost in dissipative processes, depends
not only on the frequency and the total number of oscillations, but also on the interracial
motion. Wear of contact surfaces is an important factor in controlling forced vibrations. If
this wear is not defined appropriately, the probability of undesired phenomena, eg resonance
and growing noise, increases. This logic is widely used in machine fault diagnosis [16].
After an appropriate diagnosis has revealed the critical sub-system, an analysis can be
performed and eventually are-design could be required. The analysis of the fault sub-system,
exhibiting too high vibrations, almost inevitably requires the understanding of the actual
performance and service-life of the critical component. Often, this parameter is expressed
using norms such as the number of revolutions (of a gear wheel) or the cumulative number of
periods, N, performed since the last maintenance. A further norm - sliding distance - should
be also involved to enable more efficient diagnosis of the problems and optimisation of the
system.

4. CONCLUSIONS

The functionality and life of rotating elements, that are widespread phenomena in technical
systems, are closely associated with the oscillation regime, but also with the kinematics of
interracial motion.

Presently, published works in kinematics do not provide satisfactory models even for the
most basic cases of interracial motion, eg rolling-sliding contact. Currently, the fundamental
concepts of circular motion and oscillations are presented without addressing the motion
gradient with respect to contacting surfaces. It should be noted that motion, by definition,
can be observed only with respect to certain reference object. For the large family of
systems, the most convenient reference is the contacting surface.

As long as the neighboring aggregates mutually slide, there is a high probability that
conditions for coexistence of both systems are met. Mutually sliding systems preserve the
general courses of their motion, however the surface configurations are sacrificed.
Otherwise, a collision causes elastic repulsion or permanent deformation (ie a significant
change in motion tensor), fracture or decay, depending on the time - space scale of the
observation. Yet fi.u-ther option is joining the aggregates into modified consolidations.
Systems exhibiting the forced oscillations are, in addition, affected by the interracial motion.



Bearing in mind the broad class of practical systems that are affected by sliding, some basic
kinematic relations of the interracial motion were analyzed more closely. This paper presents
the mathematical derivation of the general case of the interracial motion, with reference to
selected mechanical systems characterized by the presence of the forced oscillations.

These examples emphasize an interdisciplinary approach, i.e. the mechanistic and materials
engineering notions are utilized by means of stochastic and deterministic concepts.
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