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ABSTRACT

Acoustically active materials (chiral materials) that lack centrosymmetry due to chirality
in their microstructure can be characterized by the constitutive relations ~ji = ~yji + pyi +
h~~aij + cKji md xi = (~ + &)Kji + (~ - &)Kij + llKfi6ij + Cyji. Accordingly, two longitudinally,
two right circularly and two lefl circularly polarized elastic waves can propagate in chiral
medium. Using appropriate field representations along with prescribed boundary conditions,
scattering characteristics at chiral interfaces can be realized. In this paper, reflection and
transmission characteristics of chiral slabs bounded by achiral media for longitudinally elastic
waves with normal incident are thoroughly discussed. Results obtained can be applied for the
design of broadband acoustic impedance transformer and acoustic absorbers which will be
reported in the near fbture.

1. INTRODUCTION

Chid materials, which lack inversion symmetry due to handedness in their
microstmcture, have been known and called optically active materials in theoptical spectrum

z 4) Circularly polarized waves are eigenstates in chiralsince the beginning of last century.
media. 12)Because of dilTerent in chid media12). Because of different propagation characteristics
of letl circularly polarized (LCP) and right circularly polarized (RCP) waves in chkd
materiak, circular dichroism (CD) 14)and optical rotatory dispersion (RD)6) may be measured
and adopted to characterize chiral materials. Although chirality is chiefly known at optical
frequencies, electromagnetic activities can remeasured from artificial chiral composites at
microwave frequencies.8’ 13) The handedness of objects detected in the optical and
electromagnetic spectra results from the transverse nature of optical and electromagnetic
waves. 1) It follows that elastic waves, which consist of longitudinal and transverse
components, may be capable of sensing the handedness of objects at acoustic frequencies.
Dispersion equations and field equations for elastic waves propagating in chiral materials can
be obtained by usii constitutive relations> 11)and governing equations for noncentrosymmetric,



isotropic micropolar materials. 5’9) Accordingly, two longitudinally, two right circularly and
two left circularly polarized elastic waves can propagate in chiral medium.

In order to solve elastic wave problems involving contiguous regions of different
constitutive parameters, it is necessary to know the boundary conditions that vector and stress
fields must satisfi at the interfaces. It can be shown that boundary conditions at chiral-chiral
interfaces are uniquely defined by applying principles of conservation of forces and momenta.5)
Consequently, scattering characteristics at chiral-chiral interfaces are uniquely obtained. The
effects of the constitutive parameters of chiral materials on reflection characteristics for elastic
waves normally impinging upon achiraLchiral interfaces are elucidated by appropriate
boundaq conditions. 10) It is illustrated that reflection coefficients may vanish by properly
tailoring constitutive parameters of chiral materials. In additio~ the methods for determining
constitutive parameters of chiral materials for zero reflection at achiral-chiral interfaces are
established. Continuing with previous studies, reflection and transmission characteristics of
chiral slabs bounded by achiral media for longitudinally elastic waves with normal incidence are
investigated in this paper. Results obtained can be-used to analyze multiple
problems as well as firther to tailor acoustic materials using chiral composites.

2. THEORY

chiral layers’

For normally incident longitudinal elastic waves, field representations for the planar chiral
slab bounded by achiral media can be illustrated by Fig. 1. There are three regions in Fig. 1.

Two of them, region 1 (z < O) and region 3 (z > d), are achiral media, which can be

characterized by Lame constants k and V. In addition to Lame constants, rnicropolar elastic

constants & and q, and the constant c associated with noncentrosymmetry are constitutive

parameters for chiral mediurq region 2 (O < z < d).g>10)

In region 1, elastic fields which consist of incident and reflected fields can be represented
as

(1)

where kl is the longitudinal wavenumber in region 1. The transmitted fields in region 3 take the
form

u’ ‘Uti”=dAte’k3z) (2)

where ks is the longitudinal wave number in region 3. In the chiral medium, region 2, elastic
fields, which consist of displacement and rotation fields, propagating in both the positive and
negative z-directions can be represented as

U2 = U2+ + u2-

(= az ~leik~lz + ~2ei~~2z + ~3e–i~~lz + ~ e-Z~L2Z
4 )

q?=$ +~-

=aJz?#”’ +RJ3# +RJ&”’ +&Jj’4e-q

(3)

(4)



where u is the displacement vector and p is the rotation vector. The wavenumbers kLl and kLz
which represent longitudinal waves in chiral media can be numerically solved from the
following equationg)

k’(1 -Jfi2kL2km2)-k2 (kL2+km2)+kL2km2 = O (5)

where J is the angular momentum, kL = d[(hl + 2p.1)/&]lD,kw = ad[(rp + 2&)/Jpl]l”, and ~=

c/Jpx02 are shorthand notations. The ratios of the rotation vector to the displacement vector,

RL1and RL2, can be determined by substituting kLl = k and kLz= k into the following eqationg)

RL = (1- k2/kL2)/J@2 = @’f(l - k2/ku2) (6)

By applying principles of conservation of forces and moment% boundary conditions for
normally incident longitudinal waves at achiral-chiral interfaces can be uniquely determined as
given by12>14)

~,0(u1-u2~z=o =0, azo(u2-u3]z=d=o (7)

(o:, – 0;, 1 1=0, (C&a:. ~=d=o (8)Z=o

(x]
2 = o (9)‘z Zd’,d

Equations (7) and (8) indicate continuities of normal components of displacement fields
and force stresses, respectively. The third boundary condition, Eq. (9), illustrates that the
normal component of the couple stress must vanish at achiral-chiral interfaces. The force stress

ts~ in Eq. (8) and the couple stress X= in Eq. (9) can be determined from the constitutive
relations as given by

CT:= (2&+ Ql:,z (lo)

a: = (2p2 + Qu:,z + C$v:>, (11)

0:2 = (2/4+ @;,z (12)

X:z =(%+ 7)P:,Z + ~:,z (13)

The unknown constants, A’, A’, Bl, Bz, B’, and Bi can be determined in terms of Ai by
enforcing boundary conditions at achiral-chiral interfaces. Substituting field representations,
Eqs. (l)-(4), and constitutive relations, Eqs. (10)-(13), into boundary conditions, Eqs. (7)-(9)
yields the following equation
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where Z] = [pl(kl+ 2pl)] ln is the longitudinal wave impedance for media 1, Zs = [ps(ks +
2KS)]1’2is the longitudinal wave impedance for media 3, M(3, 2) = (ZtikL + ~ZwkMRL1)kLl,

M(3, 4) = (ZfiL + ~Zwk&z)kLz , M(5, 2) = (RIZ~m + ~Z~~)kL~, M(5, 4) =

(RL2Z~km + ~Z&m)k~2, ZL = [p@z + 2P~)]1n , and Zm = [pzJ(Tl + 2&)]ln are shorthand
notations.

3. NUMERICAL RESULTS AND DISCUSSIONS

The parameters adopted in this paper for calculating scattering characteristics of the

chiral slab bounded by achiral media are J, ktiL, Jf12kL2km2,ZL, kLd and Z3/Zl. The value of
Z3/Z1is arbitrary chosen to be 3. The value of ZL used for simulation in Figs. 2 – 8 is chosen

to be &. The simulation results presented in this paper are all plotted versus the

nondimensional parameter kLd. The effects of the angular momentum J on the scattering
characteristics are shown in Figs. 2 (a) and 2 (b). It can be seen clearly in these two figures
that the reflection and transmission coefficients do not vary significantly with J in the kLd
range of 1 to 360 (degree) while the rest parameters remain constant. Consequently, the value
of J used in this paper is chosen, without loss of generality, to be 10. Reflection and

transmission coefficients for the chiral slab with various values of J~2kL2kw2 and k&kL are
plotted in Figs. 3-7. In these figures, curve 1, shown for comparison represents either
reflection or transmission coefficients of the quarter wavelength impedance transformer. This

is achieved by letting region 2 be achiral medium with impedance z, =&. For small values

of J~2kL2kW2, e.g. 0.1, the chiral medium behaves almost like an achiral medium, which
implies that displacement fields play major roles in the chiral medium. This is illustrated in Fig.
3 that curves 2, 3, and 4 resemble curve 1 excluding some special points. It is observed that
reflection coefficient curves have a significant jump while transmission coefficients curves
exhibit a corresponding drop at these special points. Further examination reveals that these

phenomena occur when kLd approaches approximately multiples of 1800/(k~L). At these
points, the thickness of the chiral slab equals multiples of half wavelength for rotation fields
and, hence, total reflection of rotation fields occurs. This contributes jumps and drops of

reflection and transmission coefficient curves, respectively. As J~2kL2kw2 increases, rotation
fields play somewhat more important roles and hence wave parameters of the chiral slab
significantly change. This causes variations of magnitudes and locations of zero reflection and
so does jumps and drops of reflection and transmission coefficients as shown in Figs. 4 and 5.
As kfiL increases, wave parameters for the chiral slab vary significantly and, hence,
reflection and transmission coefficient curves become more complex as can be seen in Figs. 6
and 7.

The normalized reflected, transmitted, and total powers with respect to the incident power
are also computed for verification, Fig. 8 plots normalized powers for the chiral slab with



various values of J~2kL2kw2 and ktiL. Curves 1, 2, and 3 in this figure represent normalized
reflected, transmitted and total powers, respectively. It is evident that conservation of energy
is applied.

4. CONCLUSION

Using appropriate field representations along with prescribed boundary conditions,
scattering characteristics of the chiral slab bounded by achiral media with the material

parameters, Zs/Zl, J, kL, k~L, ZL and J~2kL2km2 can be realized. The reflection and
transmission coefficients do not vary significantly with J in the kLd range of 1 to 360 (degree)

while the rest parameters remain constant. With increasing either J~2kL2ku2 or k~L the
rotation fields play more important role and the wave parameters of the chiral slab vary
significantly which cause the reflection and transmission phenomena much more complex.
These results can be used for the design of broadband acoustic impedance transformers and
acoustic absorbers which will be reported in the near fbture.
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Fig. 1 reflection and transmission of longitudinal waves normally incident on a planar chiral
slab bounded by achiral media
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Fig.2 (a) reflection coefficient and (b) transmission coefficient for longitudinal waves normally
incident on chiral medium with material constants: curve 1: kfiL = 5, Jf12kL2kw2= 10-1,

J= 1, 5 and 10 m2, curve2: ktiL=0.5, J~2kL2kw2= 10-3,J= 1, 5 and 10 m2
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Fig.3 (a) reflection coefficient and (b) transmission coefficient for normally incident
longitudinal waves versus kLd, curve 1: region 2 being achirrd medium with z,= a,

curve 2: J~2kL2km2= 10-3,k~L = 0.2, curve 3: J~2kL2kw2 = 10-3,km/kL = 0.5, curve 4:

J~2kL2km2= 10-3,kru/kL = 2
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Fig.4 (a) reflection coefficient and (b) transmission coefficient for normally incident
longitudinal waves versus kLd, curve 1: region 2 being achiral medium with z,.=,

curve 2: J~2kL2km2 = 10-1,ktiL = 0.2, curve 3: J~2kL2km2= 10-1,k~L = 0.5, curve 4:

J~2kL2kU2= 10-1,k~kL = 2
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Fig. 5 (a) reflection coefficient and (b) transmission coefficient for normally incident

longitudinal waves versus kLd, curve 1: region 2 being achiral medium with z,= ~, curve

2: J~2kL2kw2= 0.5, km/kL = 0.2, curve 3: J~2kL2kw2= 0.5, ktiL = 0.5, curve 4: J~2kL2km2=
0.5, k~L = 2
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Fig.6 (a) reflection coefficient and (b) transmission coefficient for normally incident
longitudinal waves versus kLd, curve 1: region 2 being achiral medium with z,= ~,

curve 2: J~2kL2km2= 10-3,ktiL = 0.5, curve 3: J~2kL2kw2 = 10-1,ktiL = 0.5, curve 4:

J~2kL2km2= 0.5, k~L = 0.5
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Fig.7 (a) reflection coefficient and (b) transmission coefficient for normally incident
longitudinal waves versus kLd, curve 1: region 2 being achiral medium with Z2 = ~,

curve 2: J~2kL2kw2 = 10-3, k~L = 5, curve 3: J~2kL2km2 = 10-1, k~L = 5, curve 4:

J~2kL2km2= 0.5, ktikL = 5
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Fig. 8 normalized power for normally incident longitudinal waves versus kLd with material

constants: (a) kfiLz = 0.5, J~2kL2kw2 = 10-3, and (b) ktiLz = 5, Jf12kL2km2= 10-1,
curve 1: normalized reflected power, curve 2: normalized transmitted power and curve 3:
total power


