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ABSTRACT

This paper introduces initially a general formulation for frequency-domain dynamic and
vibration analysis using discrete Fourier transforms through the Implicit Fourier transform
concept. The issues of treatment of initial conditions in the frequency-domain and convergence
are analysed. An efficient iterative method for the frequency domain dynamic analysis of
MDOF systems and a method for analysis of nonlinear systems are introduced.

~ 1. INTRODUCTION

Frequency-domain (FD) methods for dynamic analysis of structural and vibrating
systems pertain to the class of superposition methods like the mode superposition
method which nevertheless is a time-domain one. FD methods have been well
developed in recent years and became competitive with methods in the time domain
due to the possibility of their computational implementation through the well known
FFT algorithm. Clough and Penzien, in the first edition of the excellent text on
structural dynamics [1], presented some elements of dynamic structural analysis in the
FD ant en passsant, mentioned that the FFT technique is “so efficient and powerfid
that it has made the FD approach computationally competitive with traditional time-
domain analysis and thus revolutionizing the field of structural dynamics”. 18 years
latter, in the second edition [2], that authors gave a very thorough treatment of FD
dynamic analysis of single and multi-degree-of-fredom (SDOF and MDOF) systems.

The application of FD methods is mandatory for a rigorous analysis when the system
properties are frequency dependent and when hysteretic (structural) damping is
present. Interaction forces in structural systems with soil - or fluid-structure interaction



can be frequency dependent and, consequently, the properties of these systems
(stiffhess and damping) can depend on the frequency spectrum of the excitation. On
the other hand, in dynamic structural analysis, hysteretic damping can only be
rigorously considered by means of a FD method. These two situations emphasize the
importance of FD methods. Furthermore, they can adequately account for
nonproportional damping in structural systems.

The mathematical background to develop FD methods for analysis of dynamic and
vibrating systems stems from Fourier transforms in their discrete form - Discrete
Fourier Transforms (DFT’s) [1], [2]. The computational implementation is,
succesfblly, performed through FFT’s algorithms. Venancio-Filho and Claret [3]
presented a formulation for the FD dynamic analysis of SDOF systems - the implicit
Fourier Transform (ImFT) formulation- [4], [5] by which the DFT’s and the inverse
DFT’s are implicitly incorporated in one single matrix expression. Moreover, with this
formulatio~ the number of sampling intervals in the DFT’s can be arbitrarily selected,
the analyst having thus more flexibility. Venancio-Filho and Claret [6] introduced,
subsequently, a general formulation for the FD dynamic analysis of MDOF systems in
terms of nodal and modal (generalized) coordinates. Jangid and Datha [7] developed
an iterative process for the calculation of the modal complex fi-equency response
matrix for the nonproportional damping case. Green and Cebon [8] used a FD
approach to calculate the dynamic response of highway bridges to heavy vehicle loads.

Although FD methods are of the class of superposition methods and, therefore, are
essentially linear they have been applied in the analysis of nonlinear systems through
appropriate linearization techniques. Kawamoto [9] developed a hybrid fi-equency-
tirne-domain method for nonlinear analysis in the FD. Aprile, Benedetti, and Trombetti
[10] extended Kawamoto’s method with the consideration of hysteretic and
nonproportional damping, proposing the Generalized-Alternate Frequency Time (G-
AFT) method. Venancio-Filho and Claret [3] introduced the Step-by-step Incremental
Linearization in the Frequency Domain (SILFD) method which considers the
dependence of damping with frequency. Darbre and Wolf[11] analysed problems of
stability and implementation of a hybrid frequency-time-domain approach for
nonlinear dynamic analysis.

In this paper a presentation of the hnFT formulation is initially given and two new
developments - treatment of inital conditions in the FD and convergence analysis - are
introduced. A general formulation for the FD dynamic analysis of MDOF systems with
viscous and hysteretic darnping is subsequently developed. A new iterative process for
the treatment of MDOF systems with nonproportionl damping is developed. Finally,
the SILFD method for FD nonlinear analysis is presented. Numerical experiments
covering the subjects of treatment of initial conditons and convergence are displayed.
There are given results of the analysis of a MDOF system by the above mentioned
iterative process and of a nonlinear system by the SILFD method.

2. RESPONSE OF SDOF SYSTEMS

The dynamic equilibrium equation of a SDOF system



mv+ct+kv = p(t) (2,1)

where v, t, and v are, respectively, the displacement the velocity, and the
acceleration;~ c, and k are, respectively, the mass, viscous damping, and stifhess; and
p(t) is the external loa& is to be solved in the FD. c and k can be frequency dependent,
the usual case being c frequency dependent.

The total time in which the response is to be calculated, TP, is divided in N sample
intervals At= T@. The external load is defined, along these N sample intervals, At, as
the (N x 1) vector

P = {p(%)>P(h), ...>P(%)>.OO,P(@} (2.2)

with~=n A~(n= 0,1, 2,..., N -l). Likewise the response is searched as

v = {4J ‘h)>““”>‘M ““”>4A}. (2.3)

Response for a given external load. The solution of Eq 2.1, as in Eq. 2.3, for a given
external load is expressed by the following pair of DFT’s [2]:

V(tn) = + %?&@”)’+’%)
m=O

(2.4)

()i 2%

P(f2m) = At ‘X1 p(t~) e-”’”T . (2.5)
.=0

where Qm = mAQ(m = 0,1,2,0.”,N- 1);p(Qm) is the DFT’ of the load at the
frequency Qm; and

(2.6)

is the complex frequency response f~ction at the same frequency. In this equation

~rn = f2m/f2; Q = ~ is the natural fi-equency; ~ is the darnping ratio; and Xis the

hysteretic darnping factor.

The pair of Eqs. 2.4 and 2.5 can now be cast in a single matrix equation. For this let,
initially,

be the vector of the DFT’s of the load, defined at the discretes frequencies
t2m = m An. With the definitions of Eqs. 2.2 and 2.7 Eq.2.5 can be expressed in
matrix form as

P = AtE*p (2.8)

where the (N x N) matrix E* is defined as the matrix whose generic term is



().2%

EL = e“’”“x . (2.9)

By the same token, the response from Eq. 2.4 is written in matrix form as

Ml
v —EHP

= 27t
(2.10)

where E is the matrix defined by Eq 2.9 with positive signs in the exponential, instead
of negative ones, and H is the diagonal matrix formed with the complex frequency
response functions calculated at the discrete fi-equencies, Eq. 2.6. Introducing now P
from Eq. 2.8 into Eq. 2.10 and considering that AS2At/2z = l/N, the following
equation is obtained:

v ~EHE*p.
‘N

(2.11)

Considering now the matrix

e= EHE* (2,12)

Eq. 2.11 transforms into

1v= Rep. (2.13)

Eq. 2.11 expresses the matrix formulation of the response of a SDOF system in the
FD. The DFT of the loa~ E* p, the DFT of the response, H E* p - the response in the
FD - and the inverse DFT of the response - the response in the time domain - are
implicitly embodied in that equation. For this reason it was coined as IrnFT. It can be
conveniently used for the solution of the uncoupled modal equations in a mode
superposition analysis of a MDOF system.

Response due to initial displacement Vo.This response is calculated, in the FD, as the
sum of the initial displacement V. plus the response due to a step force -k v(0). Taking
into acount Eq. 2.13, the response due to V. is

1
v~=—

N
e[–kvol]+ vol. (2.14)

In this equation 1 is a (N x 1) vector with 1‘s in every position.

Response due to initial velocity +0. An initial velocity to produces, in the time
domain, a response given by

v(t) = m +0 h(t) (2.15)

where h(t) is the unit-impulse response function. Bearing in mind that h(t) is the
inverse DFT of H(Q) according to



v(t) can be obtained, alternatively, in the frequency domain, as

Equation 2.17 transforms into discrete form as

or, taking into account that &l At/2n = l/N, as

N-1

V(tn) = -& m~o ~ H(Q~)ew[i%) .
m=O

The response due to VOfollows therefore from Eq. 2.19 according to

1
vv=— m+. e 6

NAt

(2.16)

(2,17)

(2.18)

(2.19)

(2.20)

where 6 is a (N x 1) vector with 1 in the f~st position and zero elsewhere.

Total response due to external load and initial conditions. This response is obtained
by the superposition of the responses given by Eqs. 2.13,2.14 and 2.20 according to

{

.
v.— h’ –kvol+ 1%6 +Vol (2.21)

Fig. 1 compares the response of a SDOF to an initial displacement, calculated with the
application of Eqs. 2.14 and 2.20 in the begining of each perio~ with the exact (time-
domain) solution. Fig. 2a displays the response of a SDOF, with the darnping variation
with frequency indicated in Fig. 2b and with constant darnping. These results validate
the use of Eqs. 2.14 and 2.20 in obtaining the response in the FD of a SDOF system
submitted to initial conditions

Period extension. A crucial point in the FD response calculation is the period
extension. In order that the DFT’s from Eqs 2.4 and 2.5 be valid the time of actuation
of the load must be extended to infinity. Actually, if the time of duration of the load is
~, the load must be extended with a trail of zeros until a time TP (TP>> ~). A rule of
thumb for this extension, which provides fairly good results for short duration loads, is
given in [12]. According to this

4.605
TP=—

g(i)
(2.22)
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frequency-dependent damping

where &is the darnping ratio and co is the system natural frequency. TP given by this
equation stems Ilom the time interval in which the fi-eevibration of a damped system
reduces to 1°/0of its initial value.

Convergence. It was proven in [4] that when N is even there is a complex term in the
response which corresponds to the Nyquist frequency ( ~~Jz). In [13] it was proven

that the modulus of that complex term tends to zero with increasing N. Fig. 3 indicates
this trend.

One advantage of the response calculation through the ImFT formulation is that the
number of sampling intervals N can be arbitrarily selected, conversely to the selection
in the FFT algorithm where N must be a power of 2. The analyst has, therefore, more
flexibility in the selection of N. Figs. 4a and b display the convergence of the response
of a SDOF system, with viscous and hysteretic damping, respectively, submitted to a
short duration impulsive load.

3. RESPONSE OF MDOF SYSTEM

The dynamic equilibrium equation of a MDOF system with I DOF’S submitted to an
harmonic excitation with frequency f2 is
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mV+CV+(k+ikH)v=pO eim. (3.1)

In this equation v, v, and v are, respectively, the (I x 1) vectors of nodal
displacements, velocities, and accelerations; m, c, and k are, respectively, the (I x 1)
mass, viscous damping, and stiffhess matrices; kH is the (I x 1) hysteretic damping
matrix composed by the superposition of the stiffhess matrices of the system elements,
factored by the respective darnping factors; and pOis the (I x 1) vector of the amplitude
of the harmonic loading.

Consider at this point the modal transformation

v = @w (3.2)

where @ is the (J x J), (J << I), matrix of the normal modes and w is the (J x 1) vector
of modal coordinates. The introduction of Eq. 3.2 into Eq. 3.1, subsequent
premultiplication of both sides by @T,and consideration of FT’s of both sides lead to



[422I + i(fZC + K.) + A] W(S2) = Q(Q) (3.3)

where W(Q) and Q(Q) are, respectively, the (J x 1) vectors of the FT’s of the modal
coordinates w and the modal loading q = @ p, at one of the discrete frequencies !2..

The normal modes introduced in Eq. 3.2 are normalized in such a way that
@Tm @ = I, I being the (J x J) unit matrix, and that @Tk @ = A, A being the diagonal
matrix formed by the J natural frequencies squared. Moreover, in Eq. 3.3, C = @Tc @
is the modal viscous damping matrix and KHis the modal hysteretic damping matrix.

The inversion of Eq. 3.3 produces

W(Q) = HI(Q) Q(Q) (3.4)

HI(Q) = [-S22I + i(~ C + KH) + A~l. (3.5)

H1(K2)isthe modal complex frequency response matrix.

In the absence of hysteretic damping and if the system is classically damped - or the
darnping is proportional - the modal viscous damping matrix C is diagonal and,
therefore, HI from Eq. 3.5 is also diagonal, it turning out that the individual equations
horn Eq. 3.3 are uncoupled. The solution for the jth modal coordinate, wj, can now be
obtained by Eq. 2.10 as

(3.6)

where Wj = {wj(QCl), ‘j(”I), ‘-o, ‘j(Q.), ‘-, ‘j(~N.1)}, ad likewise in Eq. 2.3,

. ‘j= {Wj(to), ‘j(tI), ‘--, ‘j(tn), ‘-o, wj(tN-1)]is the vector of the response of the jth

modal coordinate.

When the system is not classically damped - or the damping is nonproportional - HI
from Eq. 3.5 is not diagonal. An iterative process developed by Venancio Filho and
Claret [14] for the treatment of nonproportional damping in the time domain and
applied by Jangid and Datha [7]to fmd Hl, Eq. 3.5, when damping is nonproportional,
is herein extended for the solution of Eq. 3.3. Consider, initially, matrices C and KH
splig respectively, as

C=cd+cf (3.7)

and

KH = KHd + KH, (3.8)

where ed is a diagonal matrix which has the diagonal elements of C and Cf has zero
diagonal elements and the corresponding off-diagonal ones of C, the same definitions
being considered for KH. Substituting C from Eq. 3.7 and K~ from 3.8 into Eq. 3.3 and
transferring the terms containing Cf and K~,, for the RHS, one obtains



[-f22I + i(12C, + K.,) + A] W(Q) = Q(Q) - i(f2 C, + K.,) W(Q). (3.9)

The matrix in the LHS of Eq. 3.13 is diagonal. Its inversion is trivial and produces

H2(f2) = [-~’ I + i(fl Cd + K.,) + A]-’. (3.10)

From Eq. 3.9 and 3.10 it follows then

W(f2) = H2(fl) [Q(SI) - i(f2 C, + K~f) W(Q)]. (3.11)

Eq. 3.11 is treated by an iterative process as in [7]. The kti iterative step is given by the
following equation:

W(’)(Q) = H2(fl) [Q(fl) - i(fl Cf + K.f) W(k-’)(f2)].

In the f~st step: i(f2 C~ + Km) W(”)(n) = O

Convergence is obtained when

wp(flm) - W;’-’)(QJ <e

wy-yQm)

(3.12)

(3.13)

forallj= 1,2, . . .. Jandallm=O, 1,2, . . .. N -1, Ebeing a small threshold parameter.
To arrive, finally, at the solution in the time domain the final iterate W}k) = Wj is

introduced into Eq. 3.6.

4. THE SILFD METHOD FOR NONLINEAR ANALYSIS

In this proposed method of FD nonlinear analysis the total time interval in which the
response is to be calculated, is divided in small sub-interwls. The assumption is made
thag in each sub-interval, the system stiffhess is constant. A linear analysis, in modal
coordinates, in the FD is therefore performed, whith initial condition taken as the final
ones in the previous sub-interval, by means of Eqs. 2.14 and 2.20.

Consider a general sub-interval s where the system stiflhess ~, is assumed constant
and is obtained from the final configuration in the previous sub-interval (secant
stiffness). The system eigenproperties ins are, consequently, constant and are obtained
from the eigenvalue equation

where $, and As are the eigenproperties in the considered sub-interval.

From now on, all the groundwork for the linear analysis in the sub-interval has been
previously developed. The response is obtained using Eq. 2.21 in terms of modal
coordinates.

5. EXAMPLES



The first example is the response of a two-story shear building submitted to a short
duration impulsive load. Damping is frequency dependent according to Fig. 5 (cl in the
upper story and C2in the lower). The response of the upper story by the iterative
process and the exact response are compared in Fig. 6. In the iterative process the
threshold parameter E = 0.001 was adopted and the number of iteration for each
frequency was around 4. The second example is a 2 DOF system which is a simplified
mathematical model of a NPP building. The spring which models the soil has a bilinear
stiffiess. The linear and nonlinear responses due to a seismic excitation are displayed
in Fig. 7
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6. CONCLUDING REMARKS

FD methods are proven to be very suitable for analysis of structural and vibrating
systems with frequency-dependent damping and with hysteretic and nonproportional
damping.

The topics of treatment of initial conditions and convergence in FD dynamic analysis
were covered and numerical experiments validated the obtained conclusions. A general
method for FD dynamic analysis of MDOF systems with the referred damping
characteristics and a proposed method for nonlinear analysis were presented.
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