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ABSTRACT
The solution of complex lumped parameter torsional vibratory systems, via the Holzer’s

method or the Transfer Matrix method, is lengthy and time consuming. In addition to that, the
presence of damping prohibits the application of the former and exceedingly prolongs the
application of the latter. In this paper, bond graphs have been used as a medium to facilitate
the rectilinear modelling of complex damped torsional-vibratory-systems. It has been
demonstrated that through elimination of transformers, the bond graph of a torsional system
will be converted to the bond graph of a rectilinear system on the basis of which the rectilinear
model of the torsional system can be established. The model has been proven to follow a very
simple pattern and to be rapidly constructible, irrespective of the complexity of the torsional
system. This approach has converted the project-type problems (via the Holzer’s or Transfer
Matrix methods) to simple class-room tutorials.
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rectilinear damping coefficient of the damper applied upon mass i

rectilinear damping coefficient of the damper joining masses i and j

torsional damping coefficient of the damper applied on torsional mass i

torsional damping coefficient of the damper joining torsional masses i and j

force applied on rectilinear mass i

tangential force applied on shaft j by shaft i

moment of inertia of torsional mass i

moment of inertia of torsional mass i sitting on shaft j

rectilinear stiffness coefficient of the spring joining masses i and j

torsional stiffness coefficient of the shaft joining torsional masses i and j

value of mass i in rectilinear model
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torque applied on rotational mass i

rotational speed of shaft i

no of teeth of gear (rotational mass) i.j

radius of torsional mass i sitting on shaft j

speed ratio of shaft i with respect to the trunk (shaft 1) = Si,l

speed ratio of shaft i with respect to shaft j

rectilinear displacement of rectilinear mass i

torsional displacement
angular velocity

INTRODUCTION
Complex lumped parameter rectilinear vibratory systems can be exactly formulated and

then solved by widely available commercial packages, while the solution of complex lumped
parameter torsional vibratory systems, via the Holzer’s method or the Transfer Matrix method,
is lengthy and time consuming. The former is unable to handle damped systems and the
application of the latter upon damped systems is cumbersome. Both methods are numerical and
the solution time dramatically increases by the number of branches of the torsional system

Rectilinear modelling of a single-branch lumped parameter torsional vibratory system was the
only case cited in the literature, such as Church (1963), Creole (1965), Hartog (1956),
Timoshenko et al (1974) and Tuplin (1966); until recently that Abhary (1991) approached
complex multi-branch torsional systems via rectilinear modelling. .

In this paper, bond graphs have been used as a medium to discover the pattern of the
rectilinear model of a complex torsional system. This has been achieved by demonstrating that
elimination of transformers of the bond graph model of a torsional system would convert it to
the bond graph of the rectilinear model of the torsional system. This research has verified that
the rectilinear model of a complex lumped parameter torsional vibratory system, irrespective of
its complexity, follows a simple pattern. The rectilinear simulation method is first established for
a two-branch lumped parameter torsional vibratory system and then generalised to cover the
most general case of the problem.
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ANALYTICAL APPROACH TO RECTILINEAR SIMULATION OF A TWO-BRANCH
TORSIONAL VIBRATORY SYSTEM

Fig.la illustrates an
example of forced and
damped vibration of a two-
branch lumped parameter
torsional vibratory system.
Encircled numbers denote
the shaft numbers and the
reference branch could be
arbitrarily nominated, say
branch 1, but it is preferred
to be the input shaft.
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The differential equations of motion of branches 1 and 2 in matrix form, considering their free-
body diagrams in Fig. lb, are respectively as follows:

B’:l{%’}={F;’or’”’}(1)

and the speed ratio of branch 2 with respect to branch 1 is

0 N,,,&_n2 —&=_S2=S2,= –—–
(3 N,,2

(3)
L.2 % 1.1

and dSO
~; = –Fjl (4)

Multiplying both sides of Equation 2 by S2 and employing Equations 3 and 4, it can be written

as follows:

“R:1{:;2}+s’[--%2i:~21{6t2}+sc22_a(:i2}=r23“)
Equations 1 and 5 can now be assembled together and presented as a single matrix equation:

[ 1{HJ,,,+S:J2, O b,, S;C,2 –S;C,2 1{H-s;& S&]{(;S2}={S2i} ‘6)

6,, + S:K,2 –S;K,2
+

o S;J2 02/s2 –S;CL2S;C12+ S;C2 02/s2

Equation 6 is the differential equation of motion of the rectilinear system illustrated in Fig. 2
which is, in fact, the rectilinear model of the torsional system shown in Fig. 1a. In Fig.2

x, = e,,, X2= e2/s2 ml = J1,l+s;” J1,2 m2=s~” J2

k12 = S; . K12 %2 = s; “C,2 C2=S; ”C2 F2=s2” M2 (7)



BOND GRAPH MODEL OF THE TWO-BRANCH TORSIONAL VIBRATORY SYSTEM
Fig.3a illustrates the bond graph model of the two-branch vibratory system shown in Fig. la,

in which Sz is the modulus of the transformer. Fig.3b which contains no transformers, depicts

the bond graph model of the rectilinear model of the torsional vibratory system shown in Fig.
2. Comparison of these two equivalent bond graphs reveals that elimination of transformers
from the bond graph model of a torsional vibratory system leads to the bond graph
model of its rectilinear model.

Close inspection and cross check of the two bond graph models in Fig.3 reveals that a
transformer may be eliminated from the bond graph of a torsional system provided that the
elements on the output side of the transformer are changed as follows:
(i) All angular velocities are divided by the modulus of the transformer.
(ii) All I, C and R parameters, i.e. moments of inertias, stifiess and damping coefficients

respectively, are multiplied by the square of the modulus of the transformer.
(iii) The value of all effort sources, i.e. torques, are multiplied by the modulus of the

transformer.
The above rules can help verify the fourth rule:

(iv) U transformer slj is followed, on its output side, by another transformer sJ,k, then due to

the elimination of the former, the modulus of the latter will be changed to the product of
the two moduli, i.e.

Sij“Sj,~= Si,~ (8)

while all elements on the output side of the latter remain intact.
The above four rules can be applied to any complex bond graph containing any number of
transformers. This will be illustrated in the next section.

J,,, J,,a

I I
1‘TF— l—

u,, sa = f, ff,,a ‘f.a

Ca—

(a)

K,a

I
c1—i —c la

J1.1+ S;Jla S:K,a

I I
—cl —1 — s; C,a

v,: u,

I
.

saMa
s: Ca— 1-

1
Va=Uajsa

s; Ja
(b)

Fig. 3

RECTILINEAR SIMULATION OF A COMPLEX TORSIONAL VIBRATORY SYSTEM
VIA BOND GRAPHS

Fig.4 shows a most general case of a complex multi-branch torsional vibrato~ system under
forced damped vibration. The rectilinear model of this system can be achieved as follows:
. Establish the bond graph model of the system, Fig. 5.
● Eliminate the transformers of the bond graph.
. Construct the linear model of the system according to the transformerless bond graph.
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The process of elimination of a transformer is carried out according to the rules (i) to (iv)
explained in the previous section. The transformers in Fig.5 may be eliminated in any order, but
it can be easily shown that in a bond graph, the nomination of the innermost transformer for
the next elimination would lead to the least labour intensive process. Thus, the innermost
transformer Sq is eliminated first, Fig.6, which changes the modulus of transformer s~,~to S1

according to Equation 5 and therefore next candidates for elimination are the innermost
transformers SZand Si in any arbitrary order.
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This process results in Fig.7 which shows the transformerless bond graph, on the basis of
which the rectilinear model of the system, Fig. 8, is constructed.
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In Fig. 8

{

ml = J1 m2=J2=J2,1 +s~. J2,2+s~. J2J

m~=s~.J~ mq=s~.J~ *5 =S:” J5 (9)

mG=JG=s~”Jb,q+s~.J~q mT=s~”JT

{

k12 = K12 kZ=s~. KZ k==s:” Kx

kn=s; ”K~ k%=s; ”K% kcT=s;.K~T

C23=S; ”CX CM= S:” CM C6=S; ”C6,3+S:. C64 C7=S; .C7
.

Fz = S3“M2,~ Fq=s2c Md F7=sq. MT

{

xl = el X2 = 02.1 = e2.2/s2 = 62,3/s3 X3 = eJs2 X4 = e4/s2

X5 = e5/s3 X6= 66,3/s3= 66,4/s4 X7 = 67/s4

where

sz = Nz,~/Nzz S3 = N2,1/N2,3 S4 = S4,3 “ S3.I = (N63/N6,4) “ (N2,1/N2,3 )

It must be noted that
Si = Si,l

s, = s,,, = 1

PATTERN OF RECTILINEAR MODEL
Close inspection of the rectilinear model, Fig.8, and cross checking it against the original

vibratory system, Fig.4, considering Equations 9 to 14, reveals that the structure of the
rectilinear model of a complex multi-branch lumped parameter torsional vibratory system
follows a simple pattern which facilitates the direct and easy construction of the rectilinear
model without the aid of the differential equations of motion or bond graphs (bond graphs

(11)

(12)

(13)

(14)



were used herein only as a medium to obtain this pattern). The pattern is discovered to be as
follows:
1. To obtain the geometry of the rectilinear model, which is similar to that of the torsional

system, redraw the vibratory system with the following changes:
(i)

(ii)

2. Set
the

Replace torsional elements (inertias J, springs K and dashpots C) with their rectilinear
counterparts (m, k and c respectively); replace torques M with forces F, and angular
displacements 6 with linear displacements x.
Merge the rectilinear counterparts of meshed gears into a lumped mass.

the value of each rectilinear element to the product of its rotational counterpart and
square of the speed ratio of the shaft upon which the rotational counterpart is sitting,

e.g.

m3 =S:” J3 k2~= S;“KM

C6= s: “C6,3+ s: ‘C6,4

3. Set the value of each force in the rectilinear model to the product Qf its torsional
counterpart, torque, and the speed ratio of the shaft on which the torque applies, e.g.

F,=s2” M,

4. Set the linear displacement of each mass in the rectilinear model to the ratio of the angular
displacement of its torsional counterpart (rotational
on which the rotational mass is sitting, e.g.

CONCLUSION
It was proven

‘2 = ‘2,1 = ‘2,2/s2 = ‘2.3/s3

that a torsional lumped parameter

mass) and the speed ratio of the shaft

X4 = e4/s2

vibratory system, irrespective of its
complexity, can be converted to, and solved via, a corresponding rectilinear model which
follows a simple pattern and it can be constructed very easily and rapidly. This conversion was
facilitated with the aid of bond graphs which served as a powerful tool for this purpose. This
rectilinear simulation of torsional systems allows all lumped parameter vibratory systems,
rectilinear and torsional, to be treated with the same mathematical tools and leaves no useful

and sensible application for the Holzer’s method any more.
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