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ABSTRACT

The 1996 version of the draft international standard ISO/DIS 3741, “Acoustics -

Determination of sound power levels of noise sources using sound pressure - Precision

methods for reverberation rooms” deleted the room qualification procedure for the

measurement of discrete frequency components. The alternative multiple source position

method has been retained. This paper shows that there is an error in the constant in the

equation for determining the number of source positions in the retained alternative method. It
also shows that the multiple source position method is not sufficient at low modal overlap.

Thus the room qualification procedure should be reinstated.

The measurement variance can be split into source position, receiver position and room

variance. The room variance depends on the distribution of modal spacings. Earlier theoretical

and numerical calculations used the Poisson or “nearest neighbour” distributions. Both these
distributions produce non-zero room variance. The Gaussian Orthogonal Ensemble (GOE)

distribution, which is currently believed to be correct, produces zero room variance at high
modal overlap. At low modal overlap, the GOE and “nearest neighbour” distributions

produce room variance values which tend towards the non-zero values produced by the

Poisson distribution.

THE MULTIPLE SOURCE POSITION METHOD

Equation (3) of ANSI (1980) is used to compute the number of source positions to be used in

the multiple source position method for measurement of sound power in a reverberant room.

This equation also appears as equation (4) in 1S0 (1996). Baade (personal communication)



has asked for clarification of the statement in Davy (1989) that “It was also shown that the

value of the constant 0.79 in equation (3) of ANSI (1980) is wrong because of an error in

Lyon’s (1969) paper”. It is shown in the following that the constant should be approximately

one. The first paragraph of Davy (1990) reads as follows.

“The transmission function of a reverberation room is defined to be the square of the modulus

of the ratio of the reverberant field sound pressure at a point in the room to the volume

velocity of the sound source. Theoretical work by Lyon (1969), Davy (1981a) and Weaver

(1989) has shown that if the transmission function is averaged over an array of N source

positions and L receiver positions, the relative covariance of the averaged transmission

function at two angular frequencies which differ by 0 is given by

relcov = (p(t?)
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(1)

where ~(e) equals 1/[1 + (W2’y)2], M equals 2nny, K equals (<p4(x)>/<p2(x)>2), y is the

decay rate of the modal amplitudes in nepers per unit of time, n is the modal density in
number of modes per unit of angular frequency, p(x) is the modal amplitude as a function of

position x in the room and C is a function of the distribution of the modal frequency spacings.

(p is Schroeder’s frequency autocorrelation function with angular frequency as the argument

and M is the statistical modal overlap which is the product of the modal density with the

statistical bandwidth of the modes. The statistical bandwidth of a mode is twice the effective

or noise bandwidth of the mode and n times the half power or 3 dB bandwidth of the mode.

For a rectangular parallelepipeds room with rigid walls K is equal to (3/2)3, (3/2)2 or (3/2) for

oblique, tangential or axial modes respectively. C is equal to O, 1/2 or 1 for Poisson, nearest

neighbour or Gaussian orthogonal ensemble (GOE) distributions of modal frequency spacings

respectively.”

Using the notation of equation(1) above, equation (3) of ANSI (1980) can be reorganised to

read

11 1 Ku
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(2)

where B is the constant K of equation (3) of ANSI (1980), K = 27/8 and a =1/2. In other
words, the relative variance of the averaged transmission function of the reverberation room

must be less than l/B. Comparison of the right hand side of equation (2) with the right hand

side of equation (1) shows that equation (2) cannot be theoretically correct. This is because

the term which multiplies l/M does depend on the number of receiver positions L, and
cannot be expressed as a constant divided by N, the number of source locations.

However, it will be assumed that L is large enough so that it can be set to infinity in the term

which multiplies l/M. Setting 0 to zero in equation (1) gives
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For the Gaussian orthogonal ensemble (GOE) distributions of modal frequency spacings,

which is now believed to be correct, equation (3) becomes

1 1 K–1
relvar = — ——
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(4)

since C = 1 for this case. The right side of equation (2) agrees with the right hand side of
equation (4) except for the fact that K should have one subtracted from it instead of being

multiplied by a = 1/2.

Averaging over all possible receiver positions enables a true estimate of the sound power

actually injected into the room. Setting the number of receiver positions L to infinity, the

number of source positions N to one and the angular frequency difference tl to zero in

equation (1) gives the relative variance of the real part of the input impedance of a
reverberation room,

K–C
rel var = —

M“
(5)

Lyon (1969) obtained this equation with the correct value C equals zero in the Poisson case.

In the “nearest neighboui’ case, he obtained this equation with Ka instead of K-C where C

equals 1/2. For high modal overlap Lyon’s a is equal to 1/2, and this is the value used in

equation (3) of ANSI (1980).

Assuming a rectangular parallelepipeds room with rigid walls, and ignoring tangential and axial

modes, K is equal to (3/2)3=27/8. Lyon’s value for Ka, as used in the standard, is then 27/16.
In the nearest neighbour case K-C=27/8-l/2=23/8 and the constant needs to be multiplied b y

(23/8)/(27/16)=46/27=1 .70. In the now accepted Gaussian orthogonal ensemble (GOE) case

K-C=27/8-1=19/8 and the constant needs to be multiplied by (19/8)/(27/16)=38/27=1 .41.

Weaver (1989) stated that “This author is inclined somewhat to K = 3.0 which is appropriate

for a Gaussian distribution of amplitudes and based on vague arguments invoking the central
limit theorem.” For K=3 and GOE case, the constant needs to be multiplied by

2/(27/16~32/27=1 .19.

For the Poisson case, Lyon (1969) derived formulae for the relative covariance of the real part

of the input impedance and for the relative covariance of the transmission function. For the
“nearest neighbour” case, he derived an incorrect formula for the relative covariance of the real

part of the input impedance. Waterhouse (1978) published a paper giving theoretical formulae

which were very different from those derived by Lyon.

The main purpose of Davy (198 la) was to reject Waterhouse’s paper and to support Lyon’s

paper both theoretically and experimentally. While doing so, Davy found and corrected



Lyon’s error in the formula for the relative covariance of the real part of the input impedance

in the “nearest neighbour” case. One of the puzzles of Lyon’s paper was that it should have

been possible to combine his formulae for the covariance of the real part of the input

impedance and the covariance of the transmission function by deriving the covariance of the

transmission averaged over a number of source and receiver positions. It was not obvious

from Lyon’s paper how to do this. In fact equation (3) of ANSI (1980) is based on a

reasonable but incorrect guess of how to combine the formulae. The main contribution of

Davy (1981a) was to show how to combine these formula in the Poisson case. Like Lyon,
Davy was unable to derive a formula for the relative covanance of the transmission function

in the “nearest neighbour” case. Davy guessed that the equation was obtained from the

Poisson case by replacing K with K-1/2, which he had shown was true for the equation for

the covariance of the real part of the input impedance.

Davy (1987) used the data from 7 experiments based on the pure tone qualification

procedure, to calculate the value of K which gave his equation, for the covariance of the

averaged transmission function, the best fit to the experimental data. In these experiments, the

angular frequency difference was zero, the number of source positions averaged over was one

and the number of independent receiver positions increased linearly over the frequency range

from 100 to 630 Hz because of the use of a circular microphone traverse. Davy obtained the

value K equals 2.16. If tangential and axial modes were ignored, Davy’s theoretical estimates

of K were 3.375 and 2.875 for the Poisson and “nearest neighbour” cases respectively. If

tangential and axial modes were included, Davy’s theoretical estimates of K were 3.10 and
2.60 for the Poisson and “nearest neighbour” cases respectively.

Weaver (1989) pointed out that the Gaussian orthogonal ensemble (GOE) distribution was

more appropriate, and derived an equation for the covari ante of the averaged transmission
function in the GOE case. His method also applied to the “nearest neighbour” case, and

showed that Davy’s guess for the covariance of the average transmission function in this case

was incorrect. Weaver’s equation alters the form of the equation from Davy’s equation and

not just the value of K. However, if number of receiving positions is large, equation (4) shows

that it replaces K with K -1. Thus the theoretical estimates in Davy (1987) for the GOE case

become 2.375 and 2.10 depending on whether tangential and axial modes are excluded or
included. If Weaver’s (1989) estimate of an uncorrected K equals 3.0 is accepted, then K -1

equals 2.0. Hence the GOE values agree well with the experimental result of 2.16 from the
pure tone qualification procedure.

The 2.10 theoretical value and the 2.16 experimental value depend on the percentage of

tangential and axial modes. Thus they depend on room volume and frequency. It must be

borne in mind that the above results are for a 607 m3 reverberation room. Reverberation

rooms will normally be smaller than this volume. Thus these values would be expected to be

slightly smaller in smaller reverberation rooms. On the other hand, equation (4) gives results

which are slightly too small because the number of receiver positions has been set equal to

infinity in the second term. To avoid the need to calculate the percentage of axial and

tangential modes, the use of the 2.375=19/8 value for K-1 in equation (4) is suggested. As

shown above this means that the 0.79 constant should be multiplied by 1.41 to give 1.11. It is



further suggested that this value be rounded to 1. This makes K-1 equal to 2.16, which is

equal to Davy’s (1987) experimental value and close to the three theoretical GOE values of

2.375, 2.10 and 2.0 which were calculated above.

THE PURE TONE QUALIFICATION PROCEDURE

The room qualification procedure for the measurement of discrete frequency components has

been deleted from ISO (1996). The alternative multiple source position method has been
retained. Baade (personal communication) has asked for clarification of the statement “It is

now known that multiple source positions will not necessarily solve all the problems, and

hence it is desirable that all reverberation rooms which are to be used for sound power

measurements should pass the qualification procedure.” This statement appears in Davy

(1981 b), and Davy (1981b) is appendix C of Davy (1989). The following appears in Davy

(1981a).

“Maling (1973) compared Lyon’s theory with the relative spatial variance of the real part of

the input impedance and concluded that Lyon’s theory overestimated the relative variance at

low and medium frequencies. Unfortunately it is necessary to vary either the frequency of

excitation, the speed of sound in the room, or the room geometry to excite a random selection

of modal frequencies before one obtains the full relative variance that Lyon’s theory is
attempting to predict (see the paper by Bodlund (1977)). In fact, if the selection of excited

modes is vaned, the source position can be left fixed because the different modes have

different spatial distributions.”

“To obtain the required variance it is necessary to take averages over the ensemble of all

possible values of modal frequencies and all possible modal functions. In theory this requires

one to average over different room shapes. This can be achieved by changing the geomet~ of

a single room or by making measurements in different rooms.”

“In practice, because the quantities to be measured depend only on the modal frequencies

(and their associated modal functions) which are very close to the excitation frequency,

changing the excitation frequency will change the selection of modal frequencies and modal
functions which determine the value of the measured quantities. Thus averaging over the

excitation frequency will give an appropriate average.

The same effect can be obtained by leaving the excitation frequency fixed and varying the
room temperature and hence the speed of sound in the room. This will also change the

selection of modal frequencies and modal functions which determine the value of the

measured quantities.”

The author’s analysis of the 125 to 1000 Hz experimental values of source position variance

in figure 3 of Maling (1973) produces an experimental value of K-C in equation (5) equal to
0.68. This is much less than Davy’s (1987) experimental K-C estimate of 2.16 for the total

variance case, which was obtained using the pure tone qualification procedure’s frequency

variation method. This shows experimental 1y that source position van ation does not produce



the total variance that exists in pure tone measurements In turn, this suggests that the pure

tone qualification procedure should be includedin1S0(1996).

Bodlund (1977) and Jacobsen (1979) separate the total variance into a room variance and a

source position variance. Using numerical procedures, Bodlund obtains K-C equals 1.42 for

the room variance and K-C equals 2.84 for the source position variance. Using theoretical

techniques, and the Poisson assumption for the room variance case, Jacobsen obtains K-C

equals 1 for the room variance and K-C equals 2.375 for the source position variance.

Note that Jacobsen’s results sum to produce K-C equals 3.375, which is the correct result for
the total variance in the Poisson case, providing that tangential and axial modes are ignored.

Also note that Jacobsen’s equations do include the effects of tangential and axial modes, but
these terms have been ignored in this analysis. Bodlund’s results sum to produce K-C equals

4.26 for the total variance. Both Jacobsen’s and Bodlund’s results are much higher than

Maling’s (1973) experimental result for the source position variance. Nevertheless, they both

show that the room variance is significant. Since this room variance cannot be reduced by

source position averaging these results again suggest that the pure tone qualification

procedure should be includedin1S0(1996).

Setting the number of source positions N and the number of receiver positions L equal to

infinity and the angular frequency difference 0 to zero in equation (1) gives

l-c
rel var = —

M’
(6)

for the room variance. This means that K-C is equal to 1-C for the room variance. Thus for

the Poisson distribution, K-C is equal to 1 for the room variance. This agrees with Jacobsen’s

theoretical result. It is also the result obtained for Davy’s(1981 a) incorrect guess of the form
of equation (1) for the “nearest neighbour” distribution, (Davy effective y guessed that C was

equal to zero and that K was replaced by K-1/2.) The correct result for the “nearest

neighbour” distribution is K-C equal to 1/2 for the room variance.

For the Gaussian orthogonal ensemble (GOE) distribution, K-C is equal to zero for the room

variance. This surprising result suggests that the multiple source position method is

equivalent to the pure tone qualification procedure. However it will soon be seen that this

result is not valid at low frequencies.

If the room variance and source position variance are uncorrelated, subtracting equation (6)

from equation (5) gives the source position variance of the real part of the input impedance,

K–1
rd var = —

M’
(7)



Ignoring tangential and axial modes, this agrees with Jacobsen’s (1979) theoretical value of K-

C=K-1=23/8=2.375 for the source position variance. It is interesting to note that this is
independent of the modal frequency spacing distribution as Jacobsen showed.

Equation (1) is not valid for the “nearest neighbour” and Gaussian orthogonal ensemble

(~E)disttibutions ofmodal spacings atlowvalues of thestatistical modal overlap M. For
low wdues of M, the relative covariance for these distributions tend to that for the Poisson

distribution (see figure 1 of Weaver (1989), figure 13 of Lyon (1 969) and appendix B of Davy
(1981a)). This trend doesn’t have a great effect on the total variance because it is offset by

the increasing percentages of tangential and axial modes as the frequency reduces and the
increasing variance of decay rate at low frequencies,

However equations (6) and (7) show that the choice of distribution only effects the room

variance (via C), while the percentages of tangential and axial modes only effect the source
position variance (via K). Also the room variance is less than half the total variance. This

means that all the increase due to low modal overlap occurs in the smaller room variance,

which is not decreased by the increasing percentages of tangential and axial modes. Thus this

effect is very significant for room variance. This means that the Gaussian orthogonal

ensemble (GOE) distribution of modal spacings predicts significant room variance at low

frequencies. This is the frequency region where the variances are most significant because

they are largest. Again, since this room variance cannot be reduced by source position

averaging, this result suggests that the pure tone qualification procedure should be included in
1S0 (1996). The use of three or more source positions will make the source position variance

less than the low frequency limit of the room variance. Further calculations are needed to

determine the exact frequency below which the multiple source position method is

unacceptable.

CONCLUSION

All the experimental, theoretical and numerical research results suggest that the pure tone

qualification procedure should be included in 1S0 (1996). The value of the constant 0.79,

should be increased to 1 in the equation used to calculate the number of source positions in

the multiple source method in 1S0 (1996),
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