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In the present paper a general solution for the vibration of a class of annular
plates, with quadratic thickness variatio~ and more general, whose thickness
varies parabolically with the radius, is obtained by the factorization of the
differential equation (more general than [7]). Poisson’s ratio is taken u = 1/3,
applicable to many materials. The paper gives the exact solutions of vibrations
difkrential equations of the eigenliequencies’ problem of annular plates above.

1. INTRODUCTION

The annular plates are used in many structural applications. Therefore, the analysis of
the annular plates’ vibrations is of interest to many mechanical, aeronautical and civil
engineers. We base our considerations on the classical plates’ theory [see 8].

We consider the free axisymmetrical vibrations of a circular disk whose flexural rigidity
varies with the radius. Such a disk is governed by the differential equation [9]

where h(r) is the axial thickness of radius r, w(r,t)-the deflectio~ and D(r)-the flexural rigidity.
Multiplying (1. 1) with r, the derivative of the equation is:

(1.2)

The particular case of tie vibration of linearly tapered plates is solved in [6], for
Poisson’s ratio v = 1/3.

The paper [2] shows the fi-ictorizationof the fourth-order differential operator



in the some particular conditions, into a pair of second order Sturm-Liouville operators

(1.3)

(1.4)

The relationship which exists between dfierential operators ~ and ~, in more

general conditions than [6] and [7], will be specified (see [3], [4]).
Thus, if p and ~ are two fimctions (not necessarily polynomials), the fhnction a is

as follows (1.5a) and the condition (1.5b) is verified
#&) . a(x)

p(x) jii@ ‘
a’(x) + P“(x)= C = const (1.5)

then the operator Lz can be fhctored :
~ = L1{L~-c} (1.6)

The fhctorizatkm (1.6) will be proved calcuhing ~:

~![y] = %[ ] (Y + c%’+p“) q[Y] + p(a” + p’”) Y (1.7)

Using (1.5b) we obtain:
~ = L.’ + (a’(x)+ 13’’(x))Ll (1.8)

We can see the i%ctorization of fourth-order differential equation too. The eigenvalue
problems of the ~ and & operators are

L1[Y]+AY=O , LJY]+TY=O (1.9)

If the conditions (1.5) are veritled, then the equation (1.9b) can be flwtored:

{L[y] + ~ , y} {Ll[y] + ~ , Y}= o (1.10)

where the eigenvalues LI and L2 have the expressions

Ai=
-c + (-1} d-”

2
9 i G{1,2} (1.11)

This factorization of fburth-order ditlkrential equation can be proved using the
factorization of fourth-order dtierential operator ( see (1.6)).

2. THE FACTOIUZATION OF THE DIFFERENTIAL EQUATION

Considering the fimtorintion (1.6), used m [2], [3] and [4] , if we may write the
dfirential equatio~ which results by separating variables from (1.2), as

[ 7j+*:[d~M~)y]+.Y(r)=o (2.,)** p(r)p’(r) d’w)

in the following conditions:
pJrJ . u(r)

d’) N’) ‘
a’(r) + p“(r) = c = cow. (2.2)

theq the diflkrential equation can be fhctored.
It means that:



Ip(r) = al .h(r)r
p(r)~’(r) = a2 . rD(r) > al ,a2, a3 ~R

ID(’)+~dD(r)—— — = a3 . p(r)fl(r)
r dr

Using (2.3) we obtain the differential equation
“ dD(r) D(r)

—- —= C1. rJM”
dr r

where

D(r) = Doh3(r)
Then the relation (2.4) becomes

dh(r)—--&h(r) =C1.r ,
dr

CICR

(2.3)

(2.4)

(2.5)

(2,6)

a first-order linear ordinary differential equation.
The general solution of (2.6) is :

1

h(r)= C’1”r2+C’2. ri C’1, C2ER (2.7)

Using (2.2a), (2.3) and (2.7), the condition (2:2b) becomes:

[,cl+c’(;+l)(i-l)r+-’=~ns~~‘f %
1

(2.8)

[
5. C’l=const , r~ “=1

3
In conclusion , only if u e {1/6 , 1/ 3} (see (2.8) and (2.1)), and relation (2.7) is

verified, the differential equation (1.2) can be solved by the ihctorization method.
In the particular case of Poisson’s ratio u = 1/ 3 , which is applicable to many

materials, (2.7) becomes (the thickness varies parabolically with the radius) :

h(r)= G-r2+c2-r , C1, C2~R (2.10)

3. THE DIFFERENTIAL EQUATION (QUADRATIC THICKNESS VARIATION)

Let us consider a disk with quadratic thickness variation with the radius r (see (2.10)
and fig.1):

h(r) =&2 Jb; ? D=Qr6 ,
E@=—

‘0 = 12(1- u’)
(3.1)

We denote

c=; , ~=m<l (3.2)
r’

We write r instead of <. Poisson’s ratio is taken u = 1/3, applicable to many

materials.

Considering the solution (3.3)
w(t,r) = FV(r)cos(tw + q3) , (3.3)

the equation (2.2) becomes:



I%Y-i

I

The mode shape ~(r) and the natural frequency o are determined by the fourth-

order linear ordinary difRerentkd equation (3.4) with variable coefficients, and various
boundary conditions.

4. THE GENERAL SOLUTION (QUADRATIC THICKNESS VARIATION)

Using the factorization of fourth order diifxential operator, we rewrite the differential
equation (3.4):

where

where

The% the diflkrential equation (4,1) can be fhctored (see(l.10)):

{$;(’’$)+.,w}{$;(,’$) +~’w}=o,

~,= –5 + (–l)m=z
1

2
, i e {12) .

We rewrite (4.3):

(4.1)

(4.2)

(4.3)

(4.4)



{r%” + 5rF?7’+ Alw]{rw” + 5rw’ + A2W}= o ● (4.5)

The solutions of Euler diilierential equations (4.5), see [8], are the form
w(r) = 7P , p~R. (4.6)

Calculating, it results

II13+ (–l)WKZ
pv = –2 + (–l)J

2
i,j E {1,2}.,

Denoting

~_ 13 – d=”
, b=

13 + J=”

2 2
9

where z <0 , we can write the solutions of (4.5) :

(4.7)

(4.8)

(4.9)

)~2(d = + (C3N + c4r-+~ . (4.10)

Thus the general solution of (4.1) is:

W(r) = ~ + j (C3r~7
)

+ Cbr’~% . (4.11)

5. THE DIFFERENTIAL EQUATION (PARABOLIC THICKNESS VARIATION)

Let us consider a disk whose thickness varies parabolically with the radius r (see
(2.10))

h(r)= hor(r+C) ,~>0, C>O. (5.1)

The flexural rigidity is

The governing

%)= Q3r3(r+ C)3 , Do s ‘h: (5.2)
12(1-uq “

differential equation , for the case u = 1/3, applicable to many
makxials , becomes :

r2(r+~*2[r4(r+~3=l+r’53)
By separating variables

w(t,r) = FV(r)cos(aM+ q) , (5.4)

the mode shape W(r) and the natural frequency o are determined by the fourth-order linear

ordinary differential equation (5.5) with variable coefficients, and various boundary conditions.

We consider that r ~ [q, r2].

Replacing the variable(see fig.1)
r=~r2, (5.6)



the equation (5.5) becomes .

q
.

c.— <1 , L5L (5.8)
~ Q

6. THE GENER4L SOLUTION (PARABOLIC THICKNESS VARL4TION)

Based on the form used in [3] and [4], see (1.3) and (1.4), we can write the Sturm-
Liouville operator, respectively the fourth order differential operator, as

(6.1)

where we admit that

P(E)= E2(&+~) , P(E)=E(’%+~). (6.2)

The equation (5.7) becomes
L’[W]+L1[W]+ZY= 0, (6.3)

where we denoted

(6.4)

Using the i%torization (1.6) of the fourth order dif&ential operator, the relation (6.3)
can be rewritten in the form

Ll[Ll[~l-(:+g)w]+L1,w]+.w=o. (6.5)

From relations (1.5a) and (6.2) we obtain
a(&)= ~+2b, (6.6)

Then it results

L1[L1[w]-4w]+tw = 0. (6.7)

The solutions of the equation (6.7) are the solutions of the equations (see (1.10)):

~ . –5 + (–1)’4=
LJw]+l.i%’=o , , , i e {1,2]

2
Using (6. 1), the equation (6.8a) becomes

Petiorming the calculatiq we obtain

The change of variable

(6.8)

(6.9)

(6.10)

#+b_—
b’

(6.11)

leads to a Gauss equation (see [8])



+-~)d’w—+(5u-2)~+AjW=0 , ic{l,2}.
du2

Its CiUIOlliCdfirm is

dw—+pqw=o.@)~+[(p+q+l)z-s]du

Using (6.12) , (6.13) and (6.8b), it follows that

S, =2, Pi+q, “, P,q,=
–5 +(–ly m .

2’1 E
1,2).

In conclusion, the general solution of (5.7) is:

where

(6,12)

(6.13)

(6.14)

(6.15)

(6.16)

We use the hypergeometric fimction ‘ fi(a, b, c; x)

of r ihnction.

7. CONCLUSION

The paper involves i%ctoring the fourth-order

and v, the logarithmic derivative

linear difl%rential operator, which
appears in the equation of motion, into a pair of second order operators (more general than
[6]).

For the annular plates with variable thickness, the conditions in which the factorization
is possl%leare presented. In this way, all the annular plates whose thickness varies with the
radius for which this method is applicable are found.

The paper determines the general solution of vibrations diflkrential equation of the
eigefiequencies’ problem of the free axisymmetrical vibrations of annular plates with
quadratic thickness variatio~ and more general, whose thickness varies parabolically with the
radius.
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