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In the present paper a general solution for the vibration of a class of annular
plates, with quadratic thickness variation, and more general, whose thickness
varies parabolically with the radius, is obtained by the factorization of the
differential equation (more general than [7]). Poisson’s ratio is taken v =1/ 3,
applicable to many materials. The paper gives the exact solutions of vibrations
differential equations of the eigenfrequencies’ problem of annular plates above.

1. INTRODUCTION

The annular plates are used in many structural applications. Therefore, the analysis of
the annular plates' vibrations is of interest to many mechanical, aeronautical and civil
engineers. We base our considerations on the classical plates' theory [see 8].

We consider the free axisymmetrical vibrations of a circular disk whose flexural rigidity
varies with the radius . Such a disk is governed by the differential equation [9]
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where h(r) is the axial thickness of radius r, w(r,t)-the deflection, and D(r)-the flexural rigidity.

Multiplying (1.1) with r , the derivative of the equation is :
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The particular case of free vibration of linearly tapered plates is solved in [6], for

Poisson’s ratio v =1/ 3.
The paper [2] shows the factorization of the fourth-order differential operator
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in the some particular conditions, into a pair of second order Sturm-Liouville operators
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The relationship which exists between differential operators L, and L,, in more
general conditions than [6] and [7], will be specified (see [3], [4]).

Thus, if p and B are two functions (not necessarily polynomials), the function o is
as follows (1.5a) and the condition (1.5b) is verified

%’(—(5)) = %((-3 , a'(x)+B"(x) = C = const (1.5)
then the operator L, can be factored :
L = Li{L - C} (1.6)
The factorization (1.6) will be proved calculating 13 :
B[] = L[]+ (@ + B") L[Y] + B(e” + B™) Y 1.7)
Using (1.5b) we obtain :
B=L+ (a’(x) + B"(x))L1 (1.8)

We can see the factorization of fourth-order differential equation too. The eigenvalue
problems of the L, and L, operators are

L[r}+Aar=0 , L[rj+zY=0 (1.9
If the conditions (1.5) are verified, then the equation (1.9b) can be factored :
{L{r]+ 2 L[]+ 2,1} =0 (1.10)
where the eigenvalues A, and A, have the expressions
i
A, =t (-1)2uc’2 —4 e {12} (1.11)

This factorization of fourth-order differential equation can be proved using the
factorization of fourth-order differential operator ( see (1.6)).

2. THE FACTORIZATION OF THE DIFFERENTIAL EQUATION

Considering the factorization (1.6), used in [2], [3] and [4] , if we may write the
differential equation, which results by separating variables from (1.2), as
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in the following conditions:
el - o) ., o'(r)+B"(r) = C = const. 2.2)

p(r)  B(r)
then, the differential equation can be factored.
It means that:
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Using (2.3) we obtain the diﬂ‘erentlal equation
dD(r) D(r) =C,-r{Dr) . C <R 2.4)
where
D(r) = Dyh*(r) 2.5)
Then the relation (2.4) becomes
dh(r 1
“) ) =G (2.6)
a first-order linear ordinary diﬁ"erent:al equatlon.
The general solution of (2.6) is :
1
h(r)=C1-r2+C2-r§; B Cl,Cz €R (2.7)
Using (2.2a) , (2.3) and (2.7), the condition (2.2b) becomes:
( 2 )( 1 ) L, . 1
5:Ci+Cy -l —+1j|——1jr3® =const. , if v=#-—
3v 3v 3 (2.8)
5:Cy=const , Iif u=§—

In conclusion , only if v e{1/6,1/3} (see (2.8) and (2.1)), and relation (2.7) is

verified , the differential equation (1.2) can be solved by the factorization method .
In the particular case of Poisson’s ratio v =1/3 , which is applicable to many
materials , (2.7) becomes (the thickness varies parabolically with the radius) :
Hr)=C,-r*+Cy-r , C,C, eR (2.10)

3. THE DIFFERENTIAL EQUATION (QUADRATIC THICKNESS VARIATION)
Let us consider a disk with quadratic thickness variation with the radius r (see (2.10)

and fig.1):
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We denote
g=L , e=1<q (3.2)
n n

We write r instead of £. Poisson’s ratio is taken v =1/3, applicable to many
materials.
Considering the solution (3.3)
w(t,r) = W(r)cos(wt +¢) , 3.3)
the equation (2.2) becomes:



2 2
__13__d(_i_i_(r7 (:i TJ +i3_(:_1_(r5%nij +( 33E2:% JW =0 , r E[C,l] . (34)
r r r r r r

NONNNNNN
I
S TR
N
/// //V//‘
o

Fig. !

The mode shape W(r) and the natural frequency o are determined by the fourth-

order linear ordinary differential equation (3.4) with variable coefficients, and various
boundary conditions.

4, THE GENERAL SOLUTION (QUADRATIC THICKNESS VARIATION)

Using the factorization of fourth order differential operator, we rewrite the differential
equation (3.4):
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Then, the differential equation (4.1) can be factored (see(1.10)):
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We rewrite (4.3):
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The solutions of Euler differential equations (4.5), see [8], are the form:

W(r)=r? , peR. (4.6)
Calculating, it results
= =2 +(-1) J 13+ (_1)2“25 4t i,jefl2} . 4.7
Denoting
213—\/25—41: b_13+\/25—41: (4.8)
2 - 2 ’ '
where 1 < 0 , we can write the solutions of (4.5) :
I(Clr‘/—+Cr V) .t e[-36, 0]
Wl(r) 4.9)
—[Cl co:(s[— Inr) +C, sm(\/— In r)] T € (—oo 36)
Wy(r) = (C3r"” + ) (4.10)
Thus the general solution of (4.1) is:

w(r) = W, + ——12—(C3r£ + C4r“5) . (4.11)
r

5. THE DIFFERENTIAL EQUATION (PARABOLIC THICKNESS VARIATION)

Let us consider a disk whose thickness varies parabolically with the radius r (see
(2.10))

Mr) =hyr(r +C) ,hy >0,C>0. (5.1
The flexural rigidity is
3
D) = Dyr¥(r +C)° . Dy=—"T0__ (5.2)
12(1 - v?)

The governing differential equation , for the case v =1/3, applicable to many
materials , becomes :
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By separating variables
w(t,r) = W(r)cos{ot + 9) , (5.4
the mode shape W(r) and the natural frequency « are determined by the fourth-order linear
ordinary differential equation (5.5) with variable coefficients, and various boundary conditions.
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We consider that » € [n,7].
Replacing the variable(see fig.1)
r=%&n , (5.6)



the equation (5.5) becomes

A

1 X 2.4 1 2dW | 32p,
+B 2P o2 5.7
al(w)dé{&@ Y e a T E e G
where & e [c,1], and (see fig.1).
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6. THE GENERAL SOLUTION (PARABOLIC THICKNESS VARIATION)

Based on the form used in [3] and [4], see (1.3) and (1.4), we can write the Sturm-
Liouville operator, respectivelly the fourth order differential operator , as
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where we admit that
pE)=¢2E+b) ., BE)=¢E+d). (6.2)

The equation (5.7) becomes
L[w]+ L[w)+r =0, (6.3)
where we denoted

t=—-§—2%2)—602 <0. (6.4)

Using the factorization (1.6) of the fourth order differential operator , the relation (6.3)
can be rewritten in the form:

LI[L,[W] (‘;’Z + :—gzﬁ) ]+ L[w]+ww=0. (6.5)
From relations (1.5a) and (6.2) we obtain
afg) =35 + 25, (6.6)
Then it results
L[L[w]-4w]+w =0 (6.7)

The solutions of the equation (6.7) are the solutions of the equations (see (1.10)) :

LiF|+Aw =0 , =0 ("1);m ie{12) (6.8)
Using (6.1) , the equation (6.8a) becomes
2(§1+ S [ £3(E + B)? d§ ] =0 , ie{12). (6.9)
Performing the calculatlon, we obtain
§(§+b)——+(sg+3b)——+x w=0 , ief{12}. (6.10)
The change of varlable
u=§;b, 6.11)

leads to a Gauss equation (see [8] )
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u(u—l)-&:‘?-+(5u—2)—d:+kiW=0 . ief{12}. (6.12)
Its canonical form is
d2w dw
z(z—l)w—+[(p+q+I)z—s]Ti;+qu=0 . (6.13)

Using (6.12) , (6.13) and (6.8b), it follows that

_ “VV25-4
s,=2, p+q,=4, pg, = 5+ 1)2 il ief{1,2}. (6.14)
In conclusion , the general solution of (5.7) is :
+b +b +b +b
M=k paa® e car{mar s emals ) a3 L 619

where

va(X)=2F(p, 9,2, %) Inx + Z:;Q;)'Z%)"— x"[w(pi +n)—w(p,)+wlg, +n)-

~w(@;) ~ w(n+2) + w(2) — wln + 1) + w(D)] + %m (6.16)

We use the hypergeometric function , Fy(a,b,c; x) and v, the logarythmic derivative
of T function.

7. CONCLUSION

The paper involves factoring the fourth-order linear differential operator, which
appears in the equation of motion, into a pair of second order operators (more general than
[6)).

For the annular plates with variable thickness, the conditions in which the factorization
is possible are presented. In this way, all the annular plates whose thickness varies with the
radius for which this method is applicable are found.

The paper determines the general solution of vibrations differential equation of the
eigenfrequencies’ problem of the free axisymmetrical vibrations of annular plates with
quadratic thickness variation, and more general, whose thickness varies parabolically with the
radius.
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