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ABSTRACT

Vibration condition monitoring is now a well accepted part of an effective plant-wide condition
monitoring program. Several techniques have been developed in recent years to assist vibration
engineers detect and diagnose faults in machinery (Mathew 1987). This paper is concerned with two
of these newer techniques, viz, the application of chaos theory and neural networks to vibration
monitoring. The article is presented in two parts; Part I is concerned with chaos theory and Part II
describes an application of neural networks to rolling element bearing fault diagnosis.

PART 1- CHAOS THEORY (co-authored bv Mr David Lo~an)

1 NOMENCLATURE

correlation integral;
correlation dimension;
offset preventing vectors spatially close being counted, leading to possibly spurious
correlations;
Kolmogorov, or information, entropy;
hyperspherei radius inside which points are counted;
embedding phase space dimension;
spacing between first element of each reconstructed vector;
number of vectors reconstructed from original time series;

position vector (in m dimensions) of point on phase space attractor;

line fit ‘quality’ coefllcient;
spacing between points within each reconstructed vector;
Heaviside step function, unity if x >0, zero if x <0.

1 A hypersphere is a sphere of arbitrary dimension. A two dimensional hypersphere is a circle, a three
dimensional one, a conventional sphere.



2 INTRODUCTION

Despite the wide proliferation of condition monitoring techniques currently in use, there has yet
been very little attention paid to the occurrence or importance of chaotic behaviour as an indicator
of the condition of rotating machinery. Extensive descriptions of the basic principles of chaos can
be found in Crutchfield et al. (1986), Baker and Gollub (1990) or Logan et al. (1992), but a common
misconception about chaos should first be clarified. Chaotic behaviour is not synonymous with
stochastic (random) behaviour. Irregularity in a random system results from unpredictable outside
influences, while the variability in a chaotic system is inherent - it is a function of the system’s
intrinsic dynamic characteristics. Chaotic systems are deterministic, but the exponential propagation
of errors means that predictions are only possible for short periods. The motion of a dynamical
system can be best represented by transforming it onto its phase space. The phase space of a system
has been defined in Baker and Gollub (1990) as ‘... a mathematical space with orthogonal co-

ordinate directions representing each of the variables needed to specify the system.’ The phase
space of a simple pendulum, for example, would be two dimensional with axes of position and
velocity (e and o). Each of the instantaneous states of a system can be plotted on its phase space,
after transient effects have decayed. The complete set of these points encompasses every location in
phase space that is ‘visited’ by the system, and is known as its attractor. The geometric form of an
attractor, related to its chaoticity, can be quantified by measuring its dimension. This study
investigates the application of one particular fractal dimension, the correlation dimension (dG), to a
vibration acceleration time series collected from a simple rolling element bearing test rig. Bearings
in both new and faulty states have been tested and the relationship between dG and bearing fault
investigated.

3 CALCULATING FRACTAL DIMENSION

3.1 EMBEDDING THE TIME SERIES

To measure the fractal dimension of an arbitrary time series, such as that collected from vibration
acceleration data, the attractor must first be reconstructed, then its dimension computed. For a
system where the differential equations of motion are known, this procedure is relatively simple,
since the characteristic variables of the system are known. For more complex systems, that may be
difficult or impossible to model accurately, the characteristic variables may not be known. The only
option for reconstructing the attractor is then to use the time delay technique. This is described in
several references, including Froehling et al. (1981), Grassberger and Procaccia(1983b and 1983c)
and Simm et al. (1987). Briefly, it involves selecting time series elements at pre-deterrnined
intervals and using these to represent points in phase space. Instead of the phase space axes being e

and o, for example, they will be t and t + At for a two dimensional phase space, t, t+ At and
t+ 2At for three dimensions, and so on according to the dimension of the phase space desired for
embedding the attractor.

Take a time series, ~i, consisting of N elements, each separated by time delay, At.

(1)

From this time series, a set of m-dimensional vectors is constructed:



(2)

Selection of the appropriate parameters is a different exercise and involves both guidelines given in
Simm et al. (1987) and an analysis of the relationships between dG and the various parameters to
determine their ranges of stability.

3.2 COMPUTING THE CORRELATION INTEGRAL
Now that the attractor has been reconstructed, the remaining task is to compute the dimension of the
attractor. There are several types of dimensions, but the correlation dimension has been found to be
accurate and computationally efficient for large dimensional attractors (Greenside et al., 1982). The
correlation dimension is derived from the correlation integral:

(3)

The terms used in this equation are all defined in Section 1, Nomenclature. The Heaviside step

(1 1)
function, @ / -Z, - ~j , simply counts the number of reconstructed vectors closer than distance, 1,

to one another, while C(l) yields the average fraction of points within distance, 1.
To calculate the correlation dimension, dG, a range of values for 1 is chosen and the correlation
integral calculated for each. A log-log plot of C(l) versus 1 is then plotted and the slope of the

central, straight line portion of the graph yields dG. The graph takes on a sigmoidal shape, as in
Figure 1.
This shape results from the characteristics of the correlation integral. The minimum number of
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Figure 1. Ideal correlation integral plot
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Figure 2. Practical correlation integral plot

Noise appears as a steeper
shallower, chaotic slope on
seen clearly in this figure.

vectors that can be counted is one (the
vector itself) and hence the integral

/
asymptotes to 1~2 . The maximum

number of vectors saturates at M, since
a hypersphere of large enough radius
will encompass all points on the
attractor. The slope of the straight line
region in the centre of the graph yields
the dimension of the reconstructed
attractor.
In practice, the process is not quite so
straightforward. When actual time
series data is analysed, a certain level of
noise is superimposed on the data.

slope towards the left side of the graph, breaking downwards to a
the right side of the plot (Figure 2). The two slope behaviour can be

3.3 ATTRACTOR EMBEDDING AND CORRELATION INTEGIUIL PARAMETERS
The selection process for obtaining the optimum parameters for determining the correlation integral
is beyond the scope of this study, but Sirnm et al. (1987) is useful. A total of 3000 points was used
to embed the time series and a dimension of 15 for the phase space.

4 EXPERIMENTAL EQUIPMENT

The test rig consisted of a single double row rolling element bearing mounted on a shaft between
two taper roller support bearings, which were designed to fail over a much longer period than the
test bearing. Details of the test bearing are given in Table 1.
The shaft upon which the bearing was mounted was driven at a constant speed of 3000 rpm (50 Hz)
by a three phase electric motor driving through a flexible coupling. A constant load force, F, was
provided by a hydraulic jack.
A TEAC DAT recorder was used to store the raw data collected from the rig in order to effectively
test different sampling rates and data algorithms without the need to retest bearings. A minimum
amount of preprocessing of the data was performed, with the system consisting solely of a piezo-
electric accelerometer and a charge amplifier. The reason for this is that Moller et al. (1989)

suggests that distortion of chaotic behaviour occurs through the addition of noise from components
such as filters and rectifiers.

Table 1. Test bearhw details

Parameter value

Model SKF 2209
Shaft diameter
Pitch circle diameter
Rolling element diameter
Number of rolling elements

Rotational frequency
Outer race defect frequency
Inner race defect frequency
Roller fault frequency

(mm) 45.0
(mm) 64.0
(mm) 11.5

30
(15 x 2 rows)

(Hz) 50
(Hz) 308
(Hz) 443
(Hz) 21



An RTI 860 model analogue-digital card was used to digitise the raw data, with 12 bit resolution.
The values available from the card were thus integers ranging from -2048 to 2047, with a theoretical
resolution of one part in 4096. A bandwidth of 2 kHz was imposed upon the data for this testing
program (approximately four harmonics of the inner race fault frequency), using a sampling rate of
4 kHz to prevent aliasing.

5 TESTING PROGRAM

Four bearings, nominally identical, were used in the testing program. Three bearing faults were
induced and compared with the normal bearing as a control case. Details of the bearings
as follows:

1. “Normal”: A new bearing was run in at light load for around six hours before
collected.

tested are

data was

2. “Outer”: A severe outer race fault, approximately 1.5 mm in width was electric arc inscribed

across the outer race perpendicular to the ball path of a new bearing.
3. “Inner”: An inner race fault, similar in form and size to the outer race fault above, was

generated on the inner race of a new bearing.
4. “Roller”: A single rolling element was removed from the race, roughened by sand-blasting and

reinstalled in the bearing.

A custom program was written to compute the correlation dimension, since no software currently

exists to perform this task. It was programmed in Turbo Pascal and entitled ‘Correl’ (rhyming with
‘coral’). It is partly event-driven and has filly modular design. Over 3000 lines of code perform
the following I%nctions:

(a) Generate phase space vectors from ASCII file of integer or floating point raw time series
data.

(b) Compute the correlation integral for an appropriate range of hypersphere radii.
(c) Output results to ASCII format file for analysis in other packages, such as spreadsheets.
(d) Plot results to allow straight line of best fit to be overlayed and dG to be calculated.
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Figure 3. Typical correlation integral plot for “Normal” bearing.
Mean: 11.0, Standard deviation: 0.9 (8Yo)

Unfortunately, selecting
appropriate portion of

the

the
correlation integral plot has to
be carried out manually, since
an algorithm has not been
devised to identi~ this region
automatically. The line of
best fit is computed using a
least squares’ regression

analysis of the data
(Kreysig, 1988), with the
appropriate points being
interactively included or
excluded from the plot by the
user.



6 TEST RESULTS

In each of the following sub-sections,

In[C(l)] the table lists the mean values obtained
for the data samples collected (usually

10- - 15sarnples). As each sample of
3000 points required less than a second
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Figure 4. Typical “Outer” bearing.
Mean: 5.4, Standard deviation: 0.3 (6’Yo)
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Figure 5. Typical “Inner” bearing plot.
Mean: 10.2,6.3, Standard deviation: 1.8,0.8 (18Y0, 13%)
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Figure 4. Typical “Roller” bearing plot.
Mean: 10.5,7.4, Standard deviation: 1.8,0.5

(17%, 7%)

any absolute values. The relative
scales between individual graphs have
been maintained constant for
comparison.

6.1 “NORMAL” BEARING
The normal bearing exhibited
behaviour typical of a time series with
mainly random components. The
plots were inconsistent in form, some
exhibiting steep slopes characteristic
of random noise, while others
appeared to have shallower slopes
indicative of more deterministic
behaviour. The overall result
averaged to a single slope, as shown
in Figure 3.

6.2 “OUTER” BEARING
The “Outer” fault was the most
consistent of any of the bearings,
with an attractor dimension varying
little from an average of dG = 5.4

(Figure 4). Most of the correlation
integral plots appeared as in
Figure 4.

6.3 “INNER” BEARING
The induced inner race fault
correlation integral plots generally
had two distinct slopes (see Figure
5), a steep slope resulting from



random noise breaking to a shallower, deterministic slope. Approximately 65°Z0of the samples had
a steep slope for the width of the graph, indicating excessive levels of noise obscuring any chaotic
behaviour present.

6.4 “ROLLER” BEARING
Forty percent of the “Roller” bearing samples
dimension. The remainder were dominated by
is shown in Figure 6.

7 DISCUSSION ON CHAOS

collected displayed a break from higher to a lower
random noise with only a single slope. An example

The correlation dimension certainly distinguishes quite effectively between the normal, undamaged
bearing and a faulty one. Figure 7 demonstrates clearly that the range of values expected for faulty

bearings will rarely overlap with the range for a normal one. Furthermore, the spread of values for
each of the faults is small enough that if sul%cient samples are taken from the time series and
averaged, as demonstrated within this paper, it is quite feasible to make coniident decisions
regarding the presence and type of fault in a bearing. Finally, the time required to compute the
correlation dimension, for the combination of parameters used, including time series reconstruction,

is only around 20 minutes on a fast Intel 486-based machine.
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Norm out Inn Roll

Figure 7. Fractal dimension range versus fault type. The lower and upper extents
of the lines represent one standard deviation either side of the mean value

(indicated by the horizontal bar)
Norm = “Normal”, Out = “Outer”, Inn = “Inner”, Roll= “Roller

Future work will encompass the problem of deterioration trending: can the correlation dimension be
used to identi~ a fault as it arises in the bearing? This is certainly more important from a practical
viewpoint than simply being able to confkn known faults.



PART II - FAULT DIAGNOSIS OF BEARINGS USING SHORT DATA LENGTHS
(co-authored by Mr David Baillie)

8 INTRODUCTION

Fault diagnosis of rolling element bearings have typically been carried out by identifying features in
the frequency spectrum of the vibration signal. However, this method of fault classification may not
always be appropriate. In situations where only short data lengths are available (such as slow or
varying speed machinery), the Fourier Transform is largely unreliable. Techniques of diagnosing
faults directly from the time domain vibration signal must be employed. A novel model-based fault
diagnostic system based on a set of parametric models of the vibration signal is proposed in this
paper. The effect of the vibration data length on the reliability and accuracy of fault classification is
investigated for a rolling element bearing.

9 MODEL-BASED FAULT DIAGNOSIS

The model-based fault diagnostic system consists of a number of parametric models that observe the
time domain vibration signal emanating from the rotating bearing (Figure 8). Each individual model
is built to represent a certain class of fault. The model which best represents the vibration signature
is declared to indicate the current state of the machine.
Previous work by Baillie and Mathew (1994) has demonstrated that rolling element bearing
vibration signals can be accurately modelled by a general autoregressive process (Box and Jenkins
1976) of the form (Eq 4):

Machine State (Diagnosis)
A

I

I Classifier I

=-
= H

I
Model Prediction Enws enOf

One-Step-Ahead -
w Predicted Outputs ;(O”.,

ParametricModel ParametricModel
for Inner Race Fault ‘“ for No Fault

y(t) y(t-1)

1 Tapped Time Delay Line

Preprocessed
Vibration Signal
fmm Machine

Figure 8. Model-Based Fault Diagnostic System

~(t)= f{y(t–l), y(t–2),..., y(n)})}

(4)

where ~(t) is the “one-step-

ahead” predicted model output
y(t-n) are past system

vibrations

The autoregressive model
effectively provides a “one-step-
ahead” prediction of the vibration
signal, as the function uses previous
outputs regressed on to itself to
provide an estimate of the current
output. A double-layer
Backpropagation neural network
provides a convenient method to
implement the general
autoregressive models, as it is able
to successfully learn the complex
nonlinear mappings between the
input and output signals.

The Backpropagation
network is based

neural
on the



Backpropagation training algorithm popularised by Rurnelhart et al (1986). Figure 9 illustrates the
general architecture of the neural network. The input layer receives the incoming vibration time
series vector from the bearing, and distributes the signal to the hidden layer. The hidden layer is
associated with intermediate processing of the signal, while in the output layer, the internal signal is
nonlinearly combined to provide the predicted output signal. The mapping performed by the neural
network can be expressed by
nonlinear sigmoids.

1
jyt) =

[)

1+ exp –~ Wb. ul

j

(Eq 5), assuming the processing element transfer functions are

(5)

where,

1
Uj =

( )1+ exp –~ Wji. y(t - i)
1 (hidden layer node activations)

w are the neural network internal connection weights.

The accuracy of the autoregressive model is usually determined by the modelling error between the
predicted model output and the actual process output (Eq 6).

e(t) = y(t) – j(t) (6)

where e(~ is the model prediction error.
By averaging the model prediction errors over a number of predictions made by the neural network,
the statistical fluctuations can be filtered out. The performance of each model can then be gauged
from the Signal to Noise Ratio (Eq 7). The Signal to Noise ratio effectively compares the average
modelling error to the average power in the vibration signal.

SNR = log10
[

~(Y(O -.7(0)2

~e(t)2 )
(7)

where SNR is the Signal to Noise Ratio (units of dB)

~~t~ is the mean of the time series signal

The model-based fault diagnostic system employs a classification stage to interpret the performance
of each autoregressive model. Based upon the Signal to Noise ratio of each model, the classifier will
determine which class of fault the vibration signal belongs to. This investigation used Baye’s rule
(Eq 8) to statistically classifi the Signal to Noise ratios from each model.

P(M,/SNl?J = P(SN--I ~r). p(~i)

~P(sN~l ‘j) ‘(”j)

J

(8)

where



‘~”ll ‘N%) is the Probability of Fault Existence that the Signal to Noise Ratio (SNRi)

corresponds to the parametric model of fault type class i (Mi),

~~sN~l ‘i) is the conditional probability density function of the Signal to Noise Ratio for a

given fault model,
P(Mj) is the a priori probability of the occurrence of a fault of type j.

10 BEARING FAULT DIAGNOSIS

The data obtained for the series of experiments was from a rolling element test rig designed by the
author. The test bearing was a double-row self-aligning type bearing, and was radially loaded at a
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Figure 9. Typical Two-Layer Backpropagation Neural Network

constant force of 9.0 kN. A piezo-electric accelerometer was mounted on the bearing housing, and
the shaft was spun at a steady speed of 3000 rpm. The bearing specifications are detailed in Table 2.

Four classes of bearing condition were considered in this investigation:
(a) An artificially induced inner race fault across both raceways (IRF). The fault was etched in

the race by electro-discharge machining.
(b) An artificially induced outer race fault across both raceways (ORF). This fault was also

initiated by electro-discharge machining of the race.
(c) An artificially induced rolling element fault on two adjacent rolling elements (REF). This

fault was simulated by grinding a flattened surface on a ball.
(d) A normal bearing in a serviceable condition (NOF). This was a new bearing after a few

hours of running in on the test rig.



Table 2. Test Bearing Specifications

Bearing Specifications
Bearing Type SKF 2209E Double Row

Pitch Diameter 64.0 mm

Ball Diameter 11.srnm

Balls per Row 15

Contact Angle Odeg

Bearing Load 9.0 kN, Radial Direction

Characteristic Fault Frequencies
Shaft Speed 50 Hz

Ball Cage Rotation 21 Hz

Ball Rotation 270 Hz

Outer Race Ball Pass 308 Hz

Inner Race Ball Pass 442 Hz

The vibration signal was conditioned by a charge preamplifier prior to envelope detection
(amplitude demodulation) and digital sampling at a rate of 2000 Hz. It is the authors’ experience
that preprocessing of the vibration signal greatly improves the quality of the models produced.
Envelope detection of the vibration signal (McFadden 1984) was necessary for the detection of
faults in this situation. This was because the radial loading of the bearing caused amplitude
modulation in the vibration signal. For example, a defect on the inner race will only periodically
pass through the loaded zone, thus a variation in strength of the vibration signal will be

encountered.
Demodulation was performed by band-passing the vibration signal (3 to 5 kHz) using an analogue
filter followed by halfwave rectification. The signal was then low-pass filtered at a frequency of 900
Hz for envelope detection and anti-aliasing prior to sampling. Once digitally sampled, each set of
data was normalised in the range from 0.0 to 1.0. This normalisation process was required so that
the data remained compatible with the Backpropagation neural networks.

11 RESULTS

The first task involved the construction of the autoregressive models for each class of bearing fault.
This was an iterative trial and error procedure for each model. The procedure is as follows
(described in further detail by Baillie and Mathew (1994)):
1.

2.

Estimation of the model order. This involves the selection of the number of past inputs needed
to model the vibration signature accurately. In the case of a double layer neural network, this
corresponds to selecting the number of input nodes. The number of number of hidden nodes in
the network must also be determined.
Estimation of model parameters. Once the structure of the model has been determined, the
parameters of the model need to be estimated. For a neural network, it requires training using

the Backpropagation algorithm.
Model validation. The performance of the model has to be tested. If the performance of the model is
not sufficient, the entire process must be repeated. The optimal Backpropagation models chosen in
this investigation for each class of fault are outlined in Table 3. Very accurate models were able to
be built for the inner race and the outer race faults. The rolling element fault data was a lot harder to
model accurately because the signal was quite noisy. It was extremely difficult to build an accurate
model of the normal bearing vibration signal, because the signal was largely random in nature and
did not have any strong periodic content.



Table 3. Summary of Optimal Backpropagation Models

Model Architecture (input/hidden/output nodes)

Inner Race Fault 4512011

Outer Race Fault 201511

Rolling Element Fault 201511

fio Fault
,

101811 I

Once the models for the system had been selected, the next task was to build the classifier. Baye’s
rule with a number of simpli~ing assumptions was used. It was assumed that the Signal to Noise
ratios emanating from the autoregressive models were Gaussian in distribution, and their means and
variances were obtained by testing a number of time series data samples. The a priori probabilities
of the occurrence of each class of fault was assumed to be equal (ie, the probability of an inner race
fault was assumed to be as equally likely as a normal bearing condition). The Baye’s classifier
outputs a Probability of Fault Existence for each class of fault.
The performance of the fault diagnostic system was evaluated for the effect of vibration data length
from the bearing test rig. Generally, the statistical fluctuations will be better filtered out by long
lengths of data. However, long data lengths may not always be available in practice. (In this paper,
the data length is defined as the number of successive vectors presented to the model. Thus the true
data length would be calculated as the model order and the number of presentations. At the
sampling rate of 2000 Hz, one complete revolution of the machine shall is 40 points. Thus 500
vector presentations approximately represents 13 revolutions of the shaft. Conversely, 25 vectors
represent 0.88 revolutions for the no fault model and 1.75 revolutions for the inner race fault
model.)
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Figure 10. Probability of Fault Existence for an Inner Race Fault of a normal
bearing condition indicated by the system, which diminishes with increasing data
length.
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Figure 11. Probability of Fault Existence for an Outer Race Fault

The average performance of the diagnostic system upon the presentation of an inner race fault in the
bearing is shown in Figure 10. The probability of fault existence for an inner race fault is close to
1.0, and remains almost independent of the number of vector presentations made to it. For 500 time
series vector presentations to the system, the probability of Fault Existence is 1,0 for an inner race
fault, and 0.0 for all the other classes of faults. Thus the system is very reliable and robust. At
shorter data lengths, the probability of fault existence of an inner race fault remains close to 1.0,
however, there is a slightly erroneous indication of a rolling element fault and normal condition. For
short data lengths, the performance and reliability of the system is slightly degraded.

FaultClass

Langth

Figure 12. Probability of Fault Existence for a Rolling Element Fault



The presence of an outer race fault can be seen to provoke a strong response from the system
(Figure 11). The probability of fault existence is approximately 1.0 for an outer race fault,
independent of the number of vector presentations. However, there is also an erroneously small
probability for a normal condition.

The presence of a rolling element fault can generally be classified accurately by the system (Figure
12). At very short data lengths the system performance is degraded, as the probability of fault
existence for a roller fault is only 0.76 on average, and for a normal bearing it is 0.16 (data length of
25 vectors). However, system performance becomes quite reliable for more than 100 vector
presentations.

0

Data Length

Fault Class

Figure 13. Probability of Fault Existence for a Normal Bearing

The probabilities of fault existence for a typical normal bearing vibration signature is illustrated in
Figure 13. In all cases, in terms of data lengths, the vibration signal is classified as pertaining to a
normal condition bearing. However, at short data lengths the probability of fault existence is quite
low. This is likely to be attributed to the fact that it was difficult to build an accurate model of the
normal bearing vibration signal. Longer data lengths help to smooth out the statistical fluctuations.

12 DISCUSSION ON MODEL BASED FAULT DIAGNOSIS

A new approach of directly diagnosing faults from the time domain vibration signal has been
investigated in this study. The model-based approach has a number of benefits over methods based
on the analysis of the spectrum for rotating machinery fault diagnosis.
The most attractive feature of model-based fault diagnosis is that only short data lengths are
required for classification of machine faults. This investigation has shown that as little as 25 time
series vector presentations (corresponding to approximately one shaft revolution) can provide
accurate and reliable diagnosis of faults in the rolling element bearing. Of course, limitations on the
minimum data length are based upon the content of extraneous noise in the signal. Noisy signals
mean that accurate models of the fault are diftlcult to build, and signal lengths for diagnosis need to
be longer so that the noise can be averaged out of the signal. Noise can also be eliminated from
signals by appropriate data preprocessing techniques.



The fault diagnostic system proposed here is largely modular in concept. Each class of fault is
associated with a parametric model. Individual models can be added or removed from the system as
required with minimal disruption.
The system is suited to real time classification of faults. This makes it particularity suitable for
continuous monitoring of high risk machinery. The availability of microelectronic neural network
chips will allow the system to be developed as a stand alone device that might be dedicated to
monitoring machinery in remote locations or provide a basis of a portable diagnostic instrument for
technicians.
The biggest drawback of the proposed system is the large amount of representative data which must
be available prior to training the models. A separate model also has to be specifically built for each
type of fault to be identified. For these reasons the system will probably find its niche in the
monitoring and diagnosis of simple machine elements, such as rolling element bearings.

Conversely, the system maybe applied in a simplistic manner for fault detection. The system might
simply consist of one model which would give a “go” or “no go” status.

13 CONCLUSION

Generally condition monitoring is about using a syndrome approach to detect, diagnose and
prognose machinery condition. This presentation has been concerned with two of the more recent
techniques.

The correlation dimension was shown to be an effective parameter for detecting the existence of a
bearing fault and has the potential to differentiate between various bearing faults for diagnostic
purposes. The correlation integral is relatively easy to compute, but requires powerfid personal

computers to reduce computation times. Further work needs to be carried out to determine the
suitability of the parameter dG for practical deterioration trending in comparison with other
established techniques.

The time series model-based system for fault diagnosis of rolling element bearings was shown to be
accurate and reliable. Nonlinear autoregressive models implemented using backpropagation neural
networks was also shown to provide adequate modelling of the vibration data for even very short
signal lengths. This technique shows promise in the monitoring of slow speed machinery or
bearings running under transient conditions where only limited amounts of data are available.

The bottom line of accurate diagnosis is the need to use all these techniques collectively to highlight
different aspects of the time waveform. One would then corroborate the evidence of failure so
obtained with results of measurement of condition using other techniques such as wear debris
analysis and electrical parameter analysis.
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