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Abstract: It is of utmost importance, at the design stage, to obtain reliable data regarding the
behaviour of harmonic drives during transition processes and to estimate its parameters (natural
frequencies, magnification factor, torque variation in different parts of the drive). This enables the
minimisation of stresses, reduction in overall dimensions and weight of the transmission, and increase
in reliability. Equations of motion for these transmissions can be derived using the energy method or
by considering the dynamic equilibrium of each link. For analysis of transition processes it is
important to account for damping, which is normally considered viscous. This approach is suitable
for the analysis of transition processes in conventional transmissions. Attempts to employ this
method for the analysis of harmonic drives yields confusing results due to the presence of the
stationary link. To overcome this discrepancy, the hypothesis of a “moving wall” was introduced,
and equations of motion for power transmissions incorporating harmonic drives were developed. As
a numerical example, a transmission for a walking excavator incorporating a harmonic drive was
considered. Peculiarities of computer modelling of such transmissions are also discussed in this

paper.
1. INTRODUCTION

The performance of mechanical transmissions incorporating harmonic drives to a large extent
depends on proper selection of design parameters. Mathematical and computer modelling of
transition processes in transmissions (start up and coast down) at the design stage becomes of
utmost importance. It enables the evaluation of design parameters for different design concepts and
helps save time and money on experimental testing. For example, on heavy metallurgical equipment
with conventional transmissions the magnification factor at the start up mode often exceeds 3 [1],
which results in overloading of the transmission elements and their failure. It is therefore important
to design transmissions with higher damping.

However, methods of mathematical and computer modelling of conventional transmissions cannot be
applied directly to the modelling of conventional transmissions because of the following peculiarities:
- Harmonic transmissions have very high speed reduction ratios in one stage (e.g. 300 : 1, 400 : 1).
When equivalent mass moments of inertia and torsional stiffness of particular links are calculated
(with respect to an input or an output link), their initial values are divided by the speed reduction



ratio squared, which often yields negligible value. Computer software in general do not accept
numerical values of coefficients of differential equations which differ by a factor of 10° or 10°.

- Harmonic drives have a fixed link (either a rigid or a flexible gear). When a conventional approach
is used to calculate the torque Ty, between links 1 and 2 connected by an elastic element with
torsional stiffness Cy,, the stiffness is multiplied by the difference in angular coordinates of these
links

Ti2=Ci2- (@1 - P2). (1)

If one of the links is fixed, say link 2, ¢, =0, and with constantly increasing value of coordinate ¢,
formula (1) gives the torque value which tends to infinity. This is confusing because in reality it
varies within a particular range, but does not increase infinitely.

Thus, a new approach to mathematical and computer modelling of transmissions incorporating
harmonic drives has to be developed. In this paper the hypothesis of a “Moving Wall” is introduced,
which enables the calculation of the torque between a fixed and rotating gears, and a special
procedure is proposed which allows the modification of the mathematical model of the transmission
when the numerical value of some of the parameters becomes negligible.

2. DETERMINATION OF THE MODEL PARAMETERS

For mathematical and computer modelling of transmissions, inertia, stiffness and damping parameters
of the model parts have to be determined. Since different parts of a transmission rotate with different
speed, these parameters’ numerical values cannot be taken directly. Their equivalent values have to
be determined with respect to an input or an output link (in most cases with respect to an input link).

An equivalent mass moment of inertia of each rotating part can be calculated using the following

formula [2] I
L= (2)
(u))?
where u;=n1/n; = speed reduction ratio between the input link (1) and the i-th link;

ni and n; = corresponding angular velocities of an input and the i - th link;
I+ = mass moment of inertia of the i-th link about its own axis of rotation.

An equivalent torsional stiffness of a link or a joint with the reference to an input link can be

determined as [2] n Ci-n
Cei = = 3)
er- (u)’ uj
where 1 = efficiency of the part of the transmission between the i-th and the input links;

e = torsional compliance of the i-th link (or a joint);
C = torsional stiffness of the i-th link (or a joint).

A damping constant o; for each link or a joint can be determined using the following relations [3]

Ci j I - I
o = ——- V(i =———— (4)
T L+ ]
where ¢ = damping factor which can be easily determined [3] if the logarithmic

decrement is known;
Cij = torsional stiffness between links i and j;
I and I} = mass moment of inertia of adjoining links i and j.



3. HYPOTHESES OF THE “MOVING WALL”

Typical mechanical transmissions incorporating a harmonic drive consist of the following parts: a
motor (normally electric motor); a coupling connecting the motor with an input shaft of a harmonic
drive which includes a wave generator, a flexible gear, and a rigid gear. In most cases the rigid gear
is fixed and the flexible gear is connected by a coupling to an output shaft which drives the particular
mechanism. In some cases when the flexible gear is fixed, the rigid gear is connected to a driven
mechanism.

As was discussed in the introductory paragraph, when one of the links is fixed (a rigid or a flexible
gear) a computational problem arises - how to determine the correct value of a torque between the
two parts, one of which is stationary. To overcome this problem the hypothesis of a “moving wall” is
introduced. It is assumed that the fixed link rotates with the velocity of the input link (it becomes a
“moving wall”). The torque between adjoining parts can be determined as the product of the
torsional stiffness and the difference in angular coordinates of the moving part and the “moving
wall”. For the case of a fixed rigid gear the part of the transmission is shown schematically in the
diagram (see Fig.1).
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Fig. 1. Schematic diagram of the part of the transmission with the “moving wall”.

If the wave generator with a mass moment of inertia I; is attached to the rigid gear at the input side,
and the flexible gear with a mass moment of inertia I - at the output side, the torque acting on the
wave generator and on the flexible gear can be determined using the following expressions

le=CIw‘((PI '(Pw)- (5)

Twj=Cuwj - (Qw - 9;). (6)

4. ANALYSIS OF TRANSITION PROCESSES AND AN EXAMPLE

As an example for analysis of transition processes we will consider a transmission of a walking
excavator with an output torque of 3000 kN-m, incorporating a harmonic drive. This transmission
was developed at the Azov State Technical University (Mariupol city, Ukraine) in collaboration with
NKMZ company (Kramatorsk city, Ukraine). The main parts of this transmission are shown in Fig.
2: a thyristor controlled electric motor (1); a coupling (2), connecting the motor with an input shaft
of the preliminary gear box which includes gears (3; 4; 5); an output shaft of the preliminary gear box



connected by a coupling 7 to an input shaft of a harmonic drive, which includes a wave generator (9;
10; 11), a flexible gear (13); a rigid gear (15), which is fixed. The flexible gear is connected by a
coupling (19) to an output shaft (20), which drives the walking mechanism (21; 22; 23; 24).
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Fig.2. Transmission of walking excavator incorporating high torque harmonic drive

For calculation of moments of inertia the main parts of the transmission can be represented as disks

and cylinders. Some of these, such as the disks of the wave generator, perform epicyclic motion. To

determine their moments of inertia the parallel axis principle was used. The torsional stiffness of
transmission parts and joints were calculated according to recommendations [2]. An analysis of
moments of inertia and torsional stiffnesses allows us to state the following:

« The highest inertial elements of the transmission can be divided in three groups: the rotor of
electric motor I; = 70kg-m? parts from the coupling of electric motor to the flexible gear, with a
total moment of inertia I, =7.89 kg-n?; parts from the flexible gear to supporting shoe with total
moment of inertia Iy =0.037 kg - n?.

« There is a big difference between moments of inertia of these groups of parts, so that

L >L> 1

» The most compliant elements of the transmission are the coupling of the electric motor; spline
joints of the coupling and the output shaft. Groups of parts I, and I, are connected by a
coupling with equivalent stiffness Cy; = 7.78 - 10’ N-m/rad. Groups of parts I, and I; are
connected by spline joints with total equivalent stiffness Ci3 = 2.35 N'm /rad, which was
determined by summing their compliances.

This allows us to develop the dynamic scheme of the transmission which is shown in Fig. 3.
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Fig. 3. Dynamic scheme of the transmission



In Fig. 3, the arrows indicate positive twist angle of parts in torsional vibration. As has been seen the
third group of parts has negligible moment of inertia I; compared to I, and I;. When the walking
mechanism works the supporting leg and shoe, prop against the ground and actually are stationary.
Thus, it is possible to consider the transmission as two mass oscillating system with two degrees of
freedom. Its natural frequencies can be determined using the following expression [4], p. 547

f1.2=(1/21)- V{0.5-[Ci2/T; + (Cr2 + Cp3)/5] 2 V[Cio/L + (Ci2 + Caa)/l] -4-Ci-Cos/11- L1} )

Substituting numerical values into expression (7), we get natural frequencies of torsional vibrations
f, = 0.782 Hz; f, =5.896 Hz.

We can calculate partial frequencies corresponding to groups of bodies I; and I

fip = (1/2m)N(Ci/Iy) = (1/2m)-V (7.78-10%/70) = 1.68 Hz;
(8)
fop = (1/20)V(Cio + Cp3) /) = (1/2m) (7.78-10° +2.35-10%) / 7.89) = 5.71 Hz.

As is seen, the second partial frequency fp, is almost coincident with the second natural frequency
f,. This happens because the second group of bodies has the moment of inertia I, much smaller than
I,. This enables further simplification of the dynamic scheme of the transmission according to the
method [3], pp.78-82. The transmission can be considered as a single oscillating body with the mass
moment of inertia I = I; + I,. The equivalent torsional stiffness connecting this body with the
“moving wall” has to provide the same natural frequency as the fundamental frequency of the
original system.

C=4-n*I(f)* = 41>77.89-(0.782) = 1.88-10°N-m/rad. 9)

I
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Fig. 4. Simplified dynamic scheme of the transmission
Where: ¢ = angular coordinate of the rotor of electric motor;

¢ = angular coordinate of the driven part (supporting leg and shoe);
T4 = driving torque at electric motor;

Ty = equivalent loading torque;

o = 109.63 kg-m’/sec - damping constant calculated according to (4).




41 DERIVATION OF DIFFERENTIAL EQUATIONS OF TRANSITION
PROCESSES IN THE TRANSMISSION

Differential equations of transition processes can be derived on the basis of D’Alembert’s principle
considering dynamic equilibrium of each rotating group of parts. For the group of parts I the
equation of dynamic equilibrium can be written as

I-¢; + C-(@1 - @2) + 0u(; - ¢2) - Ta=0. (10)
For the moving wall the equation of dynamic equilibrium is
C-(p1 - @2) + -(P1 - §2) - T, =0. (11

High torque transmissions are normally driven by thyristor controlled electric motors which allow
provision of linear acceleration within a predefined period of time. In this case the acceleration time
was 2sec, and we can write

if £>0, P1=¢:=0; @¢1=¢=0 )

if 0<t<2sec, or=et’/2; ¢r=¢t; P1=§; (12)
if t=2sec, P =2-€(t-1); <i>1 = 2-¢; Efn =0,

where € = 16.5rad/sec® - predetermined angular acceleration.

The peculiarity of this model is that if kinematic parameters of the driving link are known (@; and its
derivatives), the unknown value is the driving torque T4 which can be determined as

Ta=Ie+M, . (13)
The general solution of the system of differential equations (10;11) is as follows
@ =the/2-TL (1-¢“'%/C. (14)
Taking a derivative we get the angular velocity
w=¢,=t-€-Te-(e %/ a. (15)
The torque between the driving and the driven links will be
Ti=Te-(1-€'%). (16)

Substituting numerical values we can calculate angular coordinates and angular velocities for t = 2
sec. They are:

@1 =33rad; @; =33rad/sec; @;=33-5319-10*Ty.; @, =33rad/sec. (17)

When the motor reaches the nominal speed (t > 2 sec), the general solution to the system (10; 11)
will be as follows

¢ =2-t-€-2-€ - T (1-e/%/C (18)
The derivative (angular velocity)
»=0;=2-¢-Tr(e %/ a (19)

And the torque T;; will be determined by the expression similar to (16) because for the point in
time t > 2sec acceleration is zero and Tgq=TL.



To plot resultant angular velocities and torque we need to specify the loading torque Ty. During the
full walking cycle the loading torque varies according with the angular position of the eccentric on
the supporting leg from zero to its maximum value, Ty = 8 kN. Thus, to investigate the toughest
conditions we have to take the maximum value of the loading torque. Since the output shaft rotates
very slowly, the loading torque variation during start up time (2 sec) is negligible, and we can assume
it is constant.

42  DISCUSSION OF RESULTS

On Fig. 5, (a) angular velocities of the motor and the output shaft are plotted versus time. As it is
seen from the graph, when brakes are released and the motor is switched on, the output shaft for
approximately 0.1 sec rotates in the reverse direction, and then accelerates with the shift in angular
velocities of 2.5rad/sec. When the motor in 2 sec. reaches the nominal speed of 33 rad/sec, the
output shaft with the delay of approximately 0.05 sec. reaches the same velocity. In the mean time,
the driving torque Tq during the acceleration time is 116 % of its nominal value required to drive the
transmission (see Fig. 5, (b)). The twisting torque in the transmission Ty, steeply increases during
0.25 sec from zero to its nominal value and then remains constant. Thus, the magnification factor for
the torque on the motor shaft is only 1.16, compared to 2...2.5 on conventional transmissions.
This is a significant advantage of transmissions incorporating harmonic drives over conventional
ones.
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Fig. 5. Plot of results for the start up mode
(a) Variation of angular velocities of the driving and the driven links with time;
(b) Variation of the driving and the twisting torques with time.



S. PECULIARITIES OF COMPUTER MODELLING OF TRANSMISSIONS
INCORPORATING HARMONIC DRIVES

For computer modelling of transition processes in transmissions the “Mechanica” software can be
used. It allows the specification of torsional stiffnesses, damping constants, mass moments of inertia,
and angular velocities of particular parts like electric motor and “moving wall” using so called
“drivers”. The limited space of this paper does not allow us to describe the modelling in all detail.

For modelling of transition processes the “Motion” analysis can be used. Angular velocities of
particular parts are defined by “drivers”, and driving torques are applied. They can be defined as a
function of time (polynomial or ramp function), or user defined by a table. Variation of kinematic
parameters of different links and joint reactions (torques) are plotted as functions of time. If the
driving torque is activated during a short period of time, and then is given zero value, the “decay
curves” can be plotted for velocities of different links which enable the determination of damping
parameters of the transmission as a whole. The “Mechanica” allows the plotting of one variable
parameter versus another variable parameter which makes it very useful in dynamic analysis.

To determine natural frequencies of torsional vibrations the “Holzer” method [5] can be used. At one
end of the transmission, a sinusoidal torque is applied with variable circular frequency. At the other
end the variation with time of the joint reaction (torque) is observed. On the plot of the torque versus
circular frequency, points where the torque takes zero values (intersections with the horizontal axis)
correspond to resonance states and give the values of circular frequencies which are coincident with
the natural frequencies.

6. CONCLUSIONS

1. High speed reduction ratios in one stage of a harmonic drive results in negligible value of
moments of inertia of many transmission components. The largest inertial part is the rotor of
electric motor.

2. The most compliant parts of the transmission are the coupling of the electric motor and the gear
coupling of the output shaft. Thus, the easiest way to influence the dynamic properties of the
transmission is to vary the torsional stiffness of the motor coupling.

3. Harmonic drives provide high damping which together with high speed reduction ratios in one
stage results in low magnification factor under 1.2 compared to 2...2.5 for conventional
transmissions.

4. The hypothesis of a “moving wall” allows the determination of the angular velocity of parts
adjoining stationary parts like the rigid gear, and the ground.

5. The partial frequency method enables the simplification of the model without the sacrificing
accuracy of results.
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