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ABSTRACT

We present numerical solutions of an initial value problem for the two-
dimensional Burgers equation which models the Mach reflection of weak
shocks. These solutions provide evidence of a tiny supersonic bubble behind
the triple point. Based on this observation, and on theoretical considera-
tions, we propose that there is a centered expansion fan at the triple point,
and that the waves in the supersonic bubble are generated by the reflection
of incoming characteristics off an embedded sonic line.



1 INTRODUCTION

The two dimensional Burgers
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is a generalization of the familiar one-dimensional inviscid Burgers equation
which provides an asymptotic description of the diffraction of weak shock
waves in gas dynamics. The independent variables x and y in (1.1) are
scaled longitudinal and transverse space variables. The variable u is pro-
portional to the pressure variations and the x-velocity component while v is
proportional to the y-velocity component. Equation (1.1) has been derived
in several different physical contexts, including transonic flow, the diffraction
of acoustic beams, and the focussing of weak shocks. Numerical solutions of
this equation show the transition from linear to nonlinear focussing that is
observed in weak shock focussing experiments [6].

Weak shock reflection is described by the solution of (1.1) in y >0 with
the initial data [5]

{

o Z>ay

{

o x>ay
U(z, y,o)= ~ X<ay t ?.)(Z,y, o) =

–a x<ay”
(1.2)

The boundary conditions are v = O on y = O and v = O for x sufficiently
large and positive.

The incident shock is initially located at x = ay. The jump in u across
the shock is normalized to one without loss of generality. For a weak gas
dynamics shock with Mach number M, incident on a wedge with half-angle
a measured in radians, the corresponding value of a is given by
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For example, the numerical solution of the Euler equations shown in Figure 7
of Colella and Henderson [3] has M = 1.0483 and Q = 10°, which corresponds
to a = 0.40.

The detachment point for the asymptotic problem is a = ~, and reg-
ular reflection is impossible for values of a smaller than this [5]. The two-
dimensional Burgers equation does not admit triple points in which three



plane shocks meet at a point [1, 6], so the main problem is to understand the
structure of the Mach reflection which appears when a < ~.

The shock-reflection problem is self-similar and the solution depends only
on the two similarity variables & = x/t and q = y/t. The self-similar equa-
tions,
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change type across the sonic line
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the supersonic, hyperbolic region, equation (1.3) has two families of plus
minus characteristics, whose slopes are given by
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NUMERICAL SOLUTIONS

Figures 1–2, we show a numerical solution of (1.1) and (1.2) which gives

overall picture of the Mach reflection for a = 0.5. A higher resolution
solution of u near the triple point is shown in Figure 3. This solution was
cut out from a solution on a uniform 3000 x 2400 grid. The sonic line is
shown as a dotted line, and there is numerical evidence of a tiny supersonic
bubble behind the triple point. The height, in y/t, of the bubble is roughly
2% of the height of the Mach stem. The width of the supersonic bubble is
several times the width of the reflected shock, so it is not simply an artifact
of numerical diffusion. The details of the flow inside the bubble are too

small to resolve directly. Thus, we have to interpret the numerical solution
in the light of theoretical considerations, which place strong constraints on
the possible structure of the solution.

A schematic diagram of a proposed structure is shown in Figure 4. Essen-
tially the same structure was proposed by Guderley [4] for the Mach reflection
of weak shocks in steady flows. The incident and reflected shocks both belong
to the plus wave family. When they merge, standard shock polar arguments
show that they generate a plus Mach shock and a minus centered expansion
wave. The characteristics of the waves in the supersonic bubble originate
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Figure 1: Solution for u when a = 0.5.
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Figure 2: Solution for v when a = 0.5.
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Figure 3: Solution for u near the triple point. The dotted line is the sonic
line and the u-contour spacing is 0.01.
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Figure 4: A schematic diagram of the proposed structure of weak shock
irregular reflection.



at the sonic line. The structure is therefore consistent with domain of de-
pendence arguments for the self-similar equations in the hyperbolic region,
which imply that nonuniform waves or curves in the incident or reflected
shocks cannot form in any region where both families of characteristics can
be traced back through the hyperbolic region to infinity [6].

The minus expansion fan propagates away from the triple point and is
reflected off the sonic line as a plus compression wave [4]. The plus compres-
sion wave hits the Mach stem and is reflected as a minus expansion wave.
The supersonic bubble therefore contains plus compression waves and minus
expansion waves which are multiply reflected between the Mach stem and
the sonic line. The plus compression waves are partly absorbed by the Mach
stem, so the strength of the stem shock increases as it moves away from the
triple point. At the rear sonic point, the stem becomes strong enough that
the state behind it changes from supersonic to subsonic.

The generation of a supersonic wave by the reflection of characteristics off
a sonic line is well-known in steady transonic flows. However, there are sev-
eral differences between steady flows and self-similar flows. When the sonic
line propagates into a constant state, the characteristics of the self-similar
equations are tangent to the sonic line. As a result, all information propa-
gates towards the sonic line, and at first sight it appears that a nonuniform
supersonic wave cannot form. However, the tangency of the characteristics to
the sonic line is broken when the sonic line is embedded inside a nonuniform
wave, so that a supersonic wave can be generated [2].

For the Mach reflection of weak shocks in steady flows, Guderley [4] gave
an argument to show that the sonic line must pass exactly through the triple
point. The argument does not apply to the self-similar equations, since it
depends upon the existence of Riemann invariants, but the numerical results
do not rule out this possibility. In fact, the “dip” of the sonic line towards the
triple point becomes more pronounced with increasing numerical resolution.

In this structure, the flow behind the reflected shock and the Mach stem
is assumed to be continuous. This assumption raises some subtle questions
related to the transonic controversy. For steady transonic flows past airfoils,
there exist special airfoil shapes which allow shock-free flow at a given free
stream Mach number, but the flow is not shock-free if the Mach number is
changed or if the shape of the airfoil is perturbed. In the shock reflection
problem studied here, the shape of the Mach stem varies with the Mach
number of the incident shock. Thus, the Mach stem only has to allow a
shock-free transonic flow behind it at a single Mach number and not for a



range of Mach numbers. As a result, the possibility of shock-free flow cannot
be ruled out theoretically.

A conceivable alternative to shock-free flow behind the Mach stem is
that the supersonic bubble is terminated by a shock, as is typically the case
for steady transonic flows over an airfoil. However, there would then be
two triple points, the front supersonic triple point and the rear subsonic
triple point. Since non-singular, subsonic triple points do not exist, the flow
velocity would presumably be have to be singular at the rear sonic point, and
the whole triple point puzzle would return. These considerations suggest that
the flow behind the Mach stem is continuous, but a rigorous demonstration
of the existence of shock-free flows behind the Mach stem is likely to be very
difficult.
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