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ABSTRACT

Structural modification is a technique to modify dynamic characteristics of a structure by
changing its mass, stiffness and damping properties. The most important dynamic
characteristics of a structure are its natural frequencies since they dictate the vibration
resonances. This paper describes a method for structural modification based on solutions for
linear simultaneous equations. The method can be used to determine multiple mass and
stiffness modifications of an undamped structural system in order to relocate a resonance or
resonances. It analyzed the relationship between the spatial property changes and the natural
frequency and mode shape changes. The method provides a more generalized solution for
mass and stiffness modification than some earlier analytical work reported in the literature.
The main advantage of this method is that it does not rely on a complete eigenvalue solution
of the original system to provide exact solution. However, some drawbacks also exist that
hinders wide application of this method in structural modification. These drawbacks will be
discussed. Examples of implementation of this method will be presented in the paper.

1. INTRODUCTION

Structural modification is a technique to study the effects of physical parameter changes of a
structural system on its dynamic properties. These physical parameters are related to the
system’s mass, stiffness, damping properties or a combination of them. There are two
opposite approaches for structural modification. The first one is a direct approach. It is to
answer the question of what if some mass or stiffness property changes occur. How will that
alter the dynamic properties of as ystem. The solution to this is usually unique and available.
The second approach is about having a desired new dynamic property such as a resonance,
how and where to change a system’s physical properties to accomplish it. This is an inverse
problem and the solution can be non-unique or non-existent. Due to practical constraints,



often structural modification is allowed only on a limited locations of a structure. This leads
to what is referred to as ‘local structural modification’. Many structural modification
methods have been reported in the literature [1]-[6].

The overwhelming reason to pursue local structural modification is to improve or optimize
the dynamic properties of a structure. Designed on specifications, a structure may not always
have satisfied dynamic properties. For instance, its natural frequencies may coincide with
some ambient vibration frequencies. Thus, the ability to shift the natural frequencies can
significant y lessen structural vibration. This paper proposes a method called “Linear
Modification Method (LMM)”. This method is capable of relocating the natural
frequency/frequencies of a mass-spring like dynamic system by local mass and stiffness
changes. This method can also be extended to accommodate optimization of the dynamic
characteristics of a structural system.

2. THEORY

For an n degree-of-freedom (NDOF) dynamic system, the equation of motion subjected to
undamped free vibration can be expressed as:

(2-1)

Assume a new natural frequency, o*, is needed from structural modification using mass and
stiffness changes, then, the equation of motion of the modified system can be expressed as:

[([~]+A[@-@*2([d+@]]&*}={0} (2-2)

where, A[l141and AIKl represent the mass and stiffness modification matrices of the original
system, and O* and Y* are the natural frequency and the corresponding mode shape of the
modified system respectively.

Eq. (2-2) can be recast into:

(K]-@*2[M]~*}-&*2A[M]-AII@&*}= {0]

The receptance of the original system is defined as:

k+”)l=kl-~”’[d
then, Eq. (2-3) can be expressed as:

i’}= [~(@*)l@*2A[M1-AIKlk*}

(2-3)

(2-4)

(2-5)

For the sake of simplicity, assume that mass and stiffness modifications only occur among
coordinates i, j and k of the NDOF mass-spring system. Figure 1 shows all the possible links
between these three coordinates which are the 3 mass blocks and 6 linear springs. Then Eq.
(2-5) will become:
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where, the frequency response functions (FRFs) matrix is:
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In Eq. (2-6), the symbols Am,, Amj, Amk represent the mass modifications and the symbols
Aklj, Akjk, Akk represent the stiffness modifications among coordinates i, j and k,
respectively. The symbols &, ZUCJand Akti indicate the stiffness modifications of grounded
springs,

Through matrix operation on Eq. (2-6), the general LMM equation (LMME) can be derived
as:

H[{fill‘[::1‘[i:}Y’*= (i)*’Y.* :ii.(:”)a)*2Y* 2(:*)(D*’Y* :i: (:”)
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(2-8)
For a mass-spring system, the LMME can be used for multiple and simultaneous mass and
spring modifications to relocate natural frequencylfrequencies. The specific modification
equations shown in reference [7] can be derived from this general LMME by deleting the
corresponding terms. For example, if mass modification is applied at coordinates i, j and k of
an NDOF mass-spring system, let the following terms be zero,

Aki, = AkM= Ak,, = Ak,, = Akjk = Akik=0 (2-9)

Then the LMME will become the same equation for mass only modification derived in [7]:
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For modifying a single-grounded spring, Akii,delete the null modification terms, the LMME
will become:

K*= ‘K* ~ii(”’)~~ii} (2-11)

or,

Akii=- 1
m

(2-12)

Eq. (2-12) is identical to the results in references [1] and [6].

In order to obtain the modification solution through the LMME for a specified natural
frequency o*, the mode shape components Y* have to be pre-defined. The FRF data at the
modified coordinates are available usually from experiments[8]). Note that in the LMME, if
the number of the modification coordinates is less than that of the modification parameters,
the linear equations become underdetermined. To overcome this problem, more than one set
of pre-defined values of Y* has to be provided. (the procedure are demonstrated in one of
the examples below).

3. NUMERICAL EXAMPLES

The validity and feasibility of the LMME are verified in this section by using a 6 DOF mass-
springs ystem in Figure 2. This system was chosen to be simple yet representative in order to
clearly illustrate the execution and potential of the method. The model properties of the
system are listed in Table 1. In the examples below we assume that the FRF data is available.

Case 1. Mass and stiffness modification at coordinates 1,2 and 3

In this case, structural modification is applied on mass mz and springs kl and kz to relocate
the second natural frequency from 63.913 Hz to 65 Hz. This is done by solving a set of linear
equations in Eq. (3-1), which is obtained through deleting the corresponding null
modification terms in Eq. (2-8):

[@*2y,~$~-(.*-y[jE31 (3-1)

-(y;-y;E!KMllZll=l!

Note that this is a case of three coordinates and three unknowns. The mass and stiffness
modifications can be obtained by pre-defining the Y* values. In this case, there are the
corresponding second mode shape elements of the original system. The modification results



are listed in Table 2. The LMME provides exact solution for the second natural frequency of
the modified system. Furthermore, the corresponding mode shape elements (Bold faced in
Table 2) of the modified system are identical to that of the original system.

Case 2. Mass and stiffness modification at coordinates 1 and 2

In this case, structural modification is applied on mass ml, mz and springs kl, kz. Since this is
a case of two coordinates and four unknowns, with one set of pre-defined values ,Y*,
underdetermined linear equation set below can be obtained from the LMME:

(3-2)

In order to provide exact solution, another set of pre-defined values (in this case, Y#) is used.
Then, the combined four linear equations with four unknowns will become:

(3-3)

Table 3 lists the modification results where the two target frequencies are 64 and 76.5 Hz.
The two sets of Y values used in Eq. (3-3) are the first two elements of the second and third
modes of the original system respectively. Note that the LMME has again provided exact
solution in this combined case.

4. CONCLUDING REMARKS

The aim of the structural modification detailed in this paper is to relocate a resonance or
several resonances of an undamped mass-spring system using a method called ‘Linear
Modification Method’. This analysis can be extended to studying other structural
modification objectives such as cancellation of a resonance with an anti-resonance and
creation of a resonance-free frequency range. The method works well for a mass-spring type
of dynamic system. It has also been applied to structural modification of truss type of
structures. However, there are presently some drawbacks for the LMME. For instance, if the
number of modification parameters is not equal to the number of the coordinates involved or
multiples of them, the LMME becomes either underdetermined or overdetermined. This will



lead to inaccurate answers for mass and stiffness modifications. These inaccuracies will in
turn lead to significant errors on system’s modal properties. As a result, a structural
modification objective such as a new natural frequency would not be achieved precisely. In
addition, further investigations are needed in order to implement the LMME to engineering
structures such as beam or plate structures. For these types of structures, modification may
involve solving a set of nonlinear equations.
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NOMENCLATURE

The list of symbols described below represents the standard notation used throughout this
paper.
[M-J: System mass matrix
[m: System stiffness matrix
AIMl: Mass modification matrix
AIKl: Stiffness modification matrix
Amil Mass modification value at iti coordinate
Akii Stiffness modification value between iti and ground
Aktj: Stiffness modification value between ifi and jti coordinates i and j
{Y*}: Displacement vector of modified system in frequency domain
[cz(@*)]: Receptance frequency response function matrix
a~(~e): Element of [@o*)] at the iti row and jth column
Ill)r: Natural frequency of rti mode
~*: Natural frequency of modified system



I Mode 1 I Mode 2 \ Mode 3 \ Mode 4 I Mode 5 I Mode 6
Natural Freq. 30.046 63.913 75.209 91.235 111.531 119.112

(Hz)
Mass 0.0575 -0.0528 0.0895 0.0424 -0.0271 0.2887

Normalized 0.1301 -0.0555 0.1861 -0,1026 -0.1612 -0.0938
Mode 0.1496 0.0989 -0.0084 -0.1882 0.1764 0.0351

Shapes 0.091 0.2554 0.0359 0.1464 -0.0606 -0.0097
0.1369 -0.1232 0.0616 0.1752 0.1588 -0.0797
0.1743 -0.0626 I -0.2284 0.0101 -0.1152 0.0124

‘able 1 The modal properties of the 6 DOF mass-spring system

—
Original system Modification value Modified system

M2 10 kg 8.97 kg 18.97 kg
K12 1000 kN/m 2664.839 kN/m 3664.839 kN/m
K23 1000 kN/m 443.583kN/m 1443.583 kN/m

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
Natural
Freq. 31.0971 65.0000 70.9788 92.8520 111.1892 151.0338
(Hz)

0.0826 0.0528 -0.0991 -0.0082 0.0602 -0.3145
0.1236 0.0556 -0.1543 0.0592 0.0866 0.1055

Mode 0.1481 -0.0991 -0.0003 0.1808 -0.2383 -0.0279
Shapes 0.0916 -0.2984 -0.0345 -0.1289 0.0827 0.004

0.1489 0.1131 0.0032 -0.2518 -0.1497 0.035
0.1836 0.0422 0.2566 0.0506 0.1347 -0.001

Table 2 The modification results of case 1.

Original system Modification value Modified system
Ml 10kg -5.1957 kg 4.8043 kg
M2 10 kg -0.2396 kg 9.7604 kg
K1 3000 kN/m -719.4322 kN/m 2280567.7998 kN/m
K2 1000 kN/m 204.1879 kN/m 1204.1879 kN/m

I Mode 1 I Mode 2 I Mode 3 I Mode 4 I Mode 5 Mode 6
Natural
Freq. 29.5871 64.0000 76.5000 91.9461 112.5307 159.2177
(Hz)

0.071 -0.0528 0.0939 0.0219 0.0279 -0.323
0.134 -0.0556 0.1953 -0.0994 0.1832 0.0545

Mode 0.1535 0.1021 -0.0096 -0.204 -0.1782 -0.0073
Shapes 0.0928 0.2667 0.0309 0.1525 0.0594 0.0009

0.1453 -0.1289 0.0818 0.1829 -0.1624 0.0389
0.1806 -0.0699 -0.2328 0.0158 0.1136 -0.0039

..-. .-
Table 3 The modification results of case 2.
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Figure 1. The modification parameters of the NDOF mass-spring system
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Figure 2. The 6 DOF mass-spring system


