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ABSTRACT 

The authors have previously published approximate formulae for the average one sided specific radiation 

wave impedance of a finite rectangular panel mounted in a rigid infinite baffle. The panel’s transverse 

vibration was due to a (possibly forced) two dimensional bending plane wave propagating in the panel 

without reflection at the edges of the panel. The average was over all the surface area of the panel and over all 

possible azimuthal angles of propagation direction. The radiation from waves propagating in different 

directions was assumed to be uncorrelated. These approximate formulae were derived from the 1982 research 

of Thomasson whose approximate formulae only covered the high and low frequency regions and not the mid 

frequency region. This paper presents more accurate versions of some of the approximate formulae. When 

the bending wave number is larger than the wave number of sound, the real part of the impedance is smaller 

than that for the case studied by Maidanik and Leppington. This is because correlated reflections are not 

included the case analyzed in this paper. When the bending wave number is smaller than or equals the wave 

number of sound, the real part of the impedance is the same for both cases. 
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1. INTRODUCTION 

The average one sided specific radiation wave impedance of a finite rectangular panel mounted in 

an infinite rigid baffle is of importance for the prediction of sound insulation, sound absorption and 

sound scattering. If the wave number of the (possibly forced) bending waves in the panel is less than or 

equal to the wave number of sound in the fluid medium into which the panel is radiating sound energy, 

the real part of the average specific forced radiation impedance is independent of the vibration pattern 

of the panel (1). If the wave number of the bending waves is greater than the wave number of sound, 

the real part of the average specific forced radiation impedance depends on the pattern of vibration  (1). 

This paper assumes that the panel’s transverse vibration is due to a (possibly forced) two dimensional 

bending plane wave propagating in the panel without reflection at the edges of the panel. The average 

is over all the surface area of the panel and over all possible azimuthal angles of propagation direction. 

The radiation from waves propagating in different directions is assumed to be uncorrelated. 

When the wave number of the (possibly forced) bending waves is less than or equal to the wave 

number of sound, the authors (2) have derived approximations for the average specific forced radiation 

impedance. These approximations were an extension of Thomasson’s approximations (3). Thomasson 

(3) published numerical calculations of the average specific forced radiation wave impedance of a 

square of side length 2e for a forcing sound wave number k in half octave steps of ke from 0.25 to 64 

and in 15° steps of the incident angle of the forcing sound wave from 0° to 90°. Thomasson (3) also 

published approximate formulae for values of ke above and below his published numerical results. The 

authors (2) were able to combine Thomasson’s high and low frequency approximations (3) to cover the 

whole frequency range. The authors (2) showed that the real part of these approximations were not 

quite as good as those published by Davy (4), but Davy (4) did not give approximations for the 
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imaginary part or cover the case when the bending wave number is greater than the wave number of 

sound. 

Since writing (2), the authors (5) have extended their approximations to cover the case when the 

bending wave number is greater than the wave number of the sound in air. Examination of the form of 

the high frequency approximation for the real part of the impedance when the bending wave number is 

greater than the wave number of sound has led to a high frequency approximation for the imaginary 

part of the impedance when the bending wave number is less than the wave length of sound. Combined 

with Davy’s (4) approximation for real part, this new approximation is better than Thomasson’s (3) 

high frequency approximation which is a complex number formula giving both the real and imaginary 

parts of the impedance. 

When the bending wave number is equal to the wave number of sound, Davy’s (4) high frequency 

approximation for the real part and a slight variant of Thomasson’s (3) high frequency approximation 

for the imaginary part are used. These give better approximations than the use of Thomasson’s 

combined complex approximate formula for both real and imaginary parts. The values of the 

impedance when the bending wave number is equal to the wave number of sound are important 

because they are used to interpolate values when the bending wave number is immediately above and 

below the wave number of sound. 

This paper presents new approximations for the imaginary part of the average specific radiation 

impedance. Together with Davy’s (4) approximations for the real part, these approximations are better 

than those previously published by the authors (2, 5). 
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Figure 1. The geometry of the problem considered in this paper. Note that if |kb| is greater than |k|, 

  does not exist as a real angle. 

2. NUMERICAL CALCULATIONS 

The geometry of the problem considered in this paper is shown in Figure 1. A rectangle, with sides 

of length 2a and 2b parallel to the x and y axes respectively, is mounted in an infinite rigid baffle lying 
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in the x-y plane with the centre of the rectangle at the co-ordinate system origin. A transverse velocity 

two dimensional plane wave with wave number vector bk  is propagating in the rectangle at an 

azimuthal angle   to the x-axis. If b kk , where k is the wave number of sound in the surrounding 

compressible fluid medium on one side of the rectangle, then the wave in the panel may be forced by 

an incident three dimension plane wave in the surrounding medium of wave number k  k  which is 

incident at an angle of   to the normal to the rectangle. 

The specific radiation wave impedance is the ratio of the radiated complex number sound pressure 

at a point on the surface of a radiating panel to the complex number transverse velocity of the panel at 

the same point. Because the specific radiation wave impedance will vary with position on the finite 

rectangular panel, the average is taken over the radiating surface of the panel. The specific radiation 

wave impedance may also vary with the azimuthal angle of propagation of the transverse velocity 

wave in the finite rectangular panel and the average will also be taken over azimuthal angle. The 

impedances in this paper are normalized by dividing by the characteristic impedance of the fluid 

medium. 

Figure 2 and Figure 3 show the numerically calculated real part and imaginary part respectively of 

the normalized surface averaged and azimuthally averaged specific radiation wave impedance as a 

function of the ratio   of the transverse wave number kb of a square panel of side length 2e, mounted 

in an infinite rigid baffle, to the wave number k of sound in the fluid medium into which the panel is 

radiating. The legend shows the value of ke. 
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Figure 2. The numerically calculated real part of the normalized surface averaged and azimuthally 

averaged specific radiation impedance as a function of the ratio   of the transverse wave number kb 

of a square panel, of side length 2e mounted in an infinite rigid baffle, to the wave number k of sound 

in the medium into which the panel is radiating. The legend shows the value of ke. 
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Figure 3. The numerically calculated imaginary part of the normalized surface averaged and 

azimuthally averaged specific radiation impedance as a function of the ratio   of the transverse 

wave number kb of a square panel, of side length 2e mounted in an infinite rigid  baffle, to the wave 

number k of sound in the medium into which the panel is radiating. The legend shows the value of ke. 

3. APPROXIMATE FORMULAE 

Calculate 

  sinbk

k
   ,  (1) 

where the second equality only applies if bk k .   is the ratio of bk  and k , which are respectively 

the transverse wave number in the rectangular panel and sound wave number in the surrounding 

compressible fluid medium into which the panel is radiating.   is the angle of incidence of an incoming 

three dimensional plane wave in the surrounding fluid medium which could generate the transverse wave in 

the rectangular panel. 

Calculate 

 
2kab

ke
a b




, (2) 

where 2a and 2b are the lengths of the sides of the rectangle and 2e is the length of the sides of a equivalent 

square. 

If 1  , calculate 

  21 cosg     , (3) 

and 
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2

p
ke


 .  (4) 

Set 1.3rw   and 0.88iw   and calculate xg  where x equals r and i. 

  min ,1  where  equals  or x xg w p x r i .  (5) 

Calculate 

 
22

lr

k ab
z


 .  (6) 

If 1rg g  , calculate 

 
1

hrz
g

 .  (7) 

If 0g   calculate 

 
0

2
0.124

3
hr hrz z

p
   . (8) 

If 0 rg g   calculate 0hrz  using Eq. (8) and mhrz  using Eq. (7) with rg g . Interpolate 
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.  (9) 

Calculate 

 

3
3 3

1

1 1
r

lr hr
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z z





,  (10) 

where lrz  is calculated using Eq. (6) and hrz  is calculated using Eq. (7), Eq. (8) or Eq. (9). 

Calculate 

 
2

li

k a b
z bH aH

b a

    
     

    
, (11) 

where 

  
2

2 1 1
( ) ln 1

3

q
H q q q

q

 
    . (12) 

If 1ig g  , calculate 

 
3

2
hiz

keg
 .  (13) 

Calculate 

 

4
4 4

1

1 1
i

li hi

z

z z





. (14) 

If 0g  , calculate 
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0

2
0.95 0.07

3
hiz

p
  . (15) 

Calculate 

  0 0min ,i i li hiz z z z  .  (16) 

If 0 ig g  , calculate 0iz  using Eq. (15) and Eq. (16), and miz  using Eq. (13) and Eq. (14) with 

ig g . Interpolate 
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i i mi
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.  (17) 

If 8ke  , calculate 

 
1

0.68
hiz

ke
 . (18) 

Calculate 

 
 1

                  if 8

max ,  if 8

is

i

is hi

z ke
z

z z ke


 


. (19) 

If 1  , calculate 

 r iz z jz  ,  (20) 

where rz  is given by Eq. (10) and iz  is given by Eq. (14), Eq. (16) or Eq. (19). 

Else if 1  , set 1.7rh   and 1.3ih   and calculate x  where x equals r and i. 

 
2

1  where  equals  or 
2

x
x

h
x r i

ke


   .  (21) 

If r  , calculate 

 

 
3/2

2

2

1
rz

ke 



. (22) 

If 1 r    calculate the real part mrz  using Eq. (22) with r  . Calculate the real part 1rz  as 

described for the 1   case with 1  . 

Interpolate 

 
   1 1

1

r r mr

r

r

z z
z

  



  



.  (23) 

If 2ke  , calculate the imaginary part 1iz  as described for the 1   case with 1  . Calculate 

 
2

1

1
miz





  (24) 

Calculate 
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  (25) 

Else if 2ke   proceed as follows 

If i  , calculate 

 
2

1

1
iz





.  (26) 

If 1 i    calculate the imaginary part miz  using Eq. (26) with i  . 

Calculate the imaginary part 1iz  as described for the 1   case with 1  . 

Interpolate 

 
   1 1

1

i i mi

i

i

z z
z

  



  



.  (27) 

If 1  , calculate 

 r iz z jz  .  (28) 

where rz  is given by Eq. (22) or Eq. (23) and iz  is given by Eq. (25), Eq. (26) or Eq. (27). 

The area averaged and azimuthally averaged specific radiation wave impedance of a finite rectangular 

panel is given by Eq. (20) or Eq. (28). 

4. ACCURACY 

Table 1 to Table 4 show the amount in decibels by which the approximate formulae presented in this 

paper exceed the numerically calculated values. For the case of the real part when 1   shown in 

Table 1, the average, standard deviation, maximum and minimum of the differences are -0.03, 0.16, 

0.32 and -0.61 dB. These values are better than those for the authors’ previous approximate formulae 

of 0.09, 0.31, 0.77 and -0.99 dB. In Table 2 for the imaginary part when 1  , the values are -0.01, 

0.45, 2.11 and -1.56 dB. Again these are better than the values for the authors’ previous approximate 

equations of -0.33, 0.84, 2.33 and -2.64 dB. Table 3 shows the differences for the real part when 1   

and gives values of -0.02, 1.09, 6.23 and -2.44 dB. The average is better than the authors’ previous 

value of 0.12 and the other three values are the same. The differences for the imaginary part when 

1   are shown in Table 4. They produce values of 0.02, 0.13, 0.42 and -0.37 dB which are less than 

or equal to the authors’ previous values of 0.02, 0.32, 1.02 and -1.45 dB. 

5. DISCUSSION 

The biggest difficulties with the approximate method occur in the cross over from the low 

frequency formulae to the high frequency formulae which occurs about ke  equals 2. Better 

agreement is obtained for the real part of the impedance when   is less than 1 and for the imaginary 

part when   is greater than 1. For the imaginary part when   is less than 1, the main problem is 

ripple in the impedance as a function of ke  when   is close to one. For the real part of the 

impedance when   is greater than 1, problems are caused by the ripple that occurs for larger values 

of   and smaller values of ke . However as noted in the introduction when   is greater than 1, 

there is a large variation of the real part of the impedance with the vibration pattern of the rectangular 

panel which depends on the exact edge conditions (1). Thus the calculated values of the impedance 

when   is greater than 1 are only an indication unless the exact boundary conditions are known and 

used in the calculations. 
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Table 1. The difference in decibels between the approximate formulae presented in this paper and 

numerical calculations for the real part of the average specific radiat ion wave impedance of a square 

panel of side length 2e  when 1  . 

μ 0.000 0.259 0.500 0.707 0.866 0.940 0.966 0.985 0.996 1.000 

ke 0° 15° 30° 45° 60° 70° 75° 80° 85° 90° 

0.25 0.06 0.06 0.07 0.08 0.07 0.06 0.04 0.03 0.01 -0.01 
0.35 0.11 0.11 0.13 0.14 0.13 0.09 0.07 0.03 0.00 -0.04 
0.50 0.19 0.20 0.22 0.23 0.19 0.12 0.07 0.01 -0.06 -0.14 
0.71 0.27 0.29 0.32 0.31 0.22 0.09 0.01 -0.09 -0.20 -0.32 
1.00 0.22 0.24 0.28 0.27 0.17 0.02 -0.08 -0.20 -0.33 -0.48 
1.41 -0.18 -0.14 -0.03 0.08 0.10 0.03 -0.03 -0.13 -0.25 -0.40 
2.00 -0.61 -0.56 -0.40 -0.18 0.02 0.07 0.06 0.01 -0.06 -0.18 
2.83 -0.17 -0.22 -0.54 -0.57 -0.33 -0.16 -0.11 -0.09 -0.11 -0.19 
4.00 0.26 0.09 -0.15 -0.37 -0.34 -0.16 -0.08 -0.05 -0.06 -0.14 
5.66 -0.09 0.04 0.05 -0.04 -0.32 -0.19 -0.10 -0.04 -0.04 -0.12 
8.00 -0.06 0.04 0.04 -0.05 -0.19 -0.22 -0.12 -0.03 -0.01 -0.09 
11.31 -0.05 -0.01 0.01 0.10 0.04 -0.22 -0.15 -0.04 0.02 -0.06 
16.00 0.04 0.00 -0.01 -0.02 -0.08 -0.14 -0.18 -0.06 0.03 -0.03 
22.63 0.02 0.00 -0.01 0.03 0.08 0.16 -0.17 -0.09 0.05 -0.01 
32.00 0.01 0.00 0.01 0.01 0.01 -0.09 -0.03 -0.13 0.04 0.02 
45.25 0.00 0.00 0.00 0.00 0.02 0.03 0.02 -0.14 0.03 0.04 
64.00 0.00 0.00 0.00 0.00 0.00 0.05 -0.08 -0.06 0.00 0.06 

 

Table 2. The difference in decibels between the approximate formulae presented in this paper and 

numerical calculations for the imaginary part of the average specific radiation wave impedance of a 

square panel of side length 2e  when 1   . 

μ 0.000 0.259 0.500 0.707 0.866 0.940 0.966 0.985 0.996 1.000 

ke 0° 15° 30° 45° 60° 70° 75° 80° 85° 90° 

0.25 0.10 0.10 0.11 0.12 0.13 0.14 0.14 0.14 0.14 0.14 
0.35 0.19 0.20 0.21 0.23 0.26 0.27 0.27 0.28 0.28 0.28 
0.50 0.36 0.36 0.35 0.32 0.28 0.23 0.20 0.17 0.14 0.10 
0.71 0.48 0.47 0.42 0.34 0.20 0.07 -0.01 -0.09 -0.18 -0.28 
1.00 -0.37 -0.36 -0.33 -0.29 -0.27 -0.27 -0.27 -0.28 -0.30 -0.32 
1.41 -1.56 -1.16 -0.67 -0.62 -0.49 -0.37 -0.30 -0.24 -0.17 -0.10 
2.00 -1.13 -1.13 -0.63 0.04 -0.22 -0.23 -0.20 -0.16 -0.10 -0.03 
2.83 2.11 0.48 -0.98 -0.18 0.01 -0.13 -0.14 -0.12 -0.07 -0.01 
4.00 -0.73 0.47 -0.04 -0.92 0.44 0.02 -0.06 -0.08 -0.05 0.02 
5.66 1.17 -0.52 0.76 -0.73 0.18 0.24 0.05 -0.03 -0.03 0.04 
8.00 -0.43 0.47 -0.50 0.56 -0.82 0.58 0.21 0.03 -0.01 0.05 
11.31 -0.05 0.13 0.42 0.23 -0.95 0.61 0.45 0.11 0.00 0.04 
16.00 0.59 0.18 -0.02 -0.26 0.20 -0.59 0.84 0.23 0.01 0.04 
22.63 0.02 -0.11 0.09 -0.13 0.65 -1.05 0.13 0.43 0.03 0.03 
32.00 0.11 0.03 -0.06 0.10 -0.53 -0.27 -0.87 0.75 0.08 0.02 
45.25 -0.22 0.09 -0.11 -0.18 0.31 0.90 -0.94 0.59 0.15 0.02 
64.00 -0.15 -0.04 -0.08 0.05 0.28 -0.46 0.28 -0.62 0.27 0.01 

 

When the bending wave number is larger than the wave number of sound, the real part of the 

impedance for the anechoic boundary condition case studied in this paper is smaller than that for the 
simply supported panel case studied by Maidanik (6, 7) and Leppington et al. (8). This is because 

correlated reflections are not included the case analyzed in this paper. The formulae of Maidanik (6, 7) 
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and Leppington et al. (8) for the case when 1   are only valid if ( 1) 1ke    . Under this 

condition, the formula of Leppington et al. (8) tends to two times (3 dB greater than) the value given by 

the formulae presented in this paper when   tends to infinity. This is because the value of the term in 

the formula of Leppington et al. (8) which is not used in this paper tends from below to the value of the 

term in the equation of Leppington et al. (8) which is used in this paper when   tends to infinity. 

When the bending wave number is less than or equal to the wave number of sound, the real part of the 

impedance is the same for both cases. 

One advantage with the approximate formulae presented in this paper over the authors’ (2, 5) 

previous approximate formulae is that no complex number operat ions are needed. 

 

Table 3. The difference in decibels between the approximate formulae presented in this paper and 

numerical calculations for the real part of the average specific radiation wave impedance of a square 

panel of side length 2e  when 1  . 

μ 1.00 1.26 1.58 2.00 2.51 3.16 3.98 5.01 6.31 7.94 10.00 

ke            

0.25 -0.01 -0.01 0.01 0.07 0.18 0.40 0.77 -0.27 -1.90 -2.44 -0.80 
0.35 -0.04 -0.14 -0.23 -0.32 -0.39 -0.41 -0.95 -2.22 -1.99 1.46 6.23 
0.50 -0.14 -0.28 -0.44 -0.62 -0.84 -1.35 -2.19 -0.99 4.29 1.26 -2.38 

0.71 -0.32 -0.44 -0.56 -0.71 -1.20 -1.82 0.29 3.96 -1.25 -0.37 0.87 

1.00 -0.48 -0.47 -0.40 -0.45 -1.35 0.84 1.56 -1.50 1.92 -1.43 1.51 

1.41 -0.40 -0.18 0.10 -0.64 0.26 0.83 -0.80 0.81 -0.35 -0.45 -0.33 

2.00 -0.18 0.07 0.26 -0.27 1.24 -0.96 1.02 -0.25 -0.76 -0.68 0.59 

2.83 -0.19 0.23 -0.21 1.11 -0.72 0.34 0.54 0.40 0.45 -0.41 -0.39 

4.00 -0.14 0.52 0.73 -0.73 0.54 0.64 0.61 -0.29 0.57 0.47 -0.12 
5.66 -0.12 0.90 0.28 0.68 0.48 0.32 -0.29 -0.36 0.17 0.05 -0.34 
8.00 -0.09 0.04 -0.33 -0.06 0.30 -0.06 0.04 -0.12 -0.04 0.06 0.09 
11.31 -0.06 0.86 -0.13 0.07 -0.14 0.19 0.15 -0.10 -0.03 0.07 -0.11 

Table 4. The difference in decibels between the approximate formulae presented in this paper and 

numerical calculations for the imaginary part of the average specific radiation wave impedance of a 

square panel of side length 2e  when 1  . 

 

μ 1.00 1.26 1.58 2.00 2.51 3.16 3.98 5.01 6.31 7.94 10.00 

ke            

0.25 0.14 0.17 0.20 0.25 0.29 0.30 0.23 0.07 -0.11 -0.18 -0.07 
0.35 0.28 0.33 0.38 0.42 0.41 0.28 0.07 -0.11 -0.12 0.01 0.09 
0.50 0.10 0.18 0.26 0.29 0.20 0.02 -0.11 -0.08 0.04 0.05 -0.01 
0.71 -0.28 -0.15 -0.03 0.01 -0.07 -0.14 -0.10 0.01 0.02 -0.01 0.01 
1.00 -0.32 -0.18 -0.10 -0.14 -0.22 -0.17 0.00 0.02 -0.01 0.01 0.00 

1.41 -0.10 -0.14 -0.25 -0.37 -0.26 0.01 -0.01 -0.01 0.00 0.01 0.01 

2.00 -0.03 0.03 0.34 -0.07 0.07 0.00 0.02 -0.01 0.00 0.00 0.00 

2.83 -0.01 0.10 -0.03 0.04 0.01 0.02 -0.01 0.00 0.00 0.00 0.00 

4.00 0.02 0.25 -0.05 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

5.66 0.04 0.07 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

8.00 0.05 -0.08 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
11.31 0.04 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

6. CONCLUSIONS 

An approximate method for calculating both the real and the imaginary parts of the single sided 

normalized specific radiation wave impedance of a finite rectangular panel has been presented. The 

results of the approximate method have been compared with numerical calculations. For the real part, 

the approximate method is between 0.32 dB higher and -0.61 dB lower than numerical calculations, 
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when the ratio of the transverse wave number in the panel to the wave number in the medium 

surrounding the panel   is less than or equal to one. For the imaginary part, the approximate method 

is between 2.11 dB higher and -1.56 dB lower than numerical calculations when   is less than or 

equal to one. For the real part, the approximate method is between 6.23 dB higher and -2.44 dB lower 

than numerical calculations when   is greater than or equal to one. For the imaginary part, the 

approximate method is between 0.42 dB higher and -0.37 dB lower than the numerical calculations, 

when   is greater than or equal to one. These maxima and minima are less than or equal in magnitude 

to the maxima and minima obtained by the authors’ previous approximate method  (2, 5). 
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