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ABSTRACT 
This work examines the effects of uncertain material and geometry properties on the dynamic characteristics 
of a simply supported plate. The forced responses of the plate are predicted using the polynomial chaos 
expansion method. The stochastic system equations are transformed to a set of deterministic equations using 
Galerkin projection. In order to improve the computational efficiency when attempting to examine the 
structure with many degrees of freedom, the Arnoldi-based Krylov subspace technique is implemented to 
reduce the number of degrees of freedom in the finite element model, before the polynomial chaos expansion 
is applied. The combined stochastic finite element analysis and model order reduction technique is shown to 
provide accurate results with significantly reduced computational effort. 
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1. INTRODUCTION 
The uncertainties in geometry and material properties are generated during manufacturing or 

assembly process, which greatly affect the dynamic responses of engineering structures. Models of 
uncertainty are generally based on either a parametric or non-parametric description of uncertainty, or 
on a combination of both (1). In a parametric model of uncertainty, uncertain variables are statistically 
described using various techniques, such as the Monte Carlo simulation method (2), random factor 
method (3) and polynomial chaos expansion method (4). The Monte Carlo simulation can directly 
obtain the statistical characteristics of the outputs, which generates many samples of the uncertain 
variables to run simulations of the system. For accurate results, the sampling number in Monte Carlo 
simulation should be very large, which results in high computational cost. In the non-parametric 
models of uncertainty, the uncertainties can be described using a universal model and disregarding the 
details of uncertainties, such as the entropy optimization principle (5) and random matrix theory (6). 

The polynomial chaos expansion (PCE) was first introduced as the homogeneous chaos (7). In the 
PCE method, the uncertain variables are represented by base polynomials. Using the orthogonality of 
the base polynomials, the stochastic system equations are transformed into a set of deterministic 
equations. Compared with Monte Carlo simulation, the PCE method can obtain the statistical 
characteristics of the results with greatly reduced computational cost. However, as the order of the 
PCE and the degrees of freedom of the dynamic system increase, the number of deterministic 
equations in the PCE simulation increases exponentially. 

This paper examines the effects of uncertain Young’s modulus and thickness on the frequency 
responses of a simply supported plate using polynomial chaos expansion. To further improve the 
computational efficiency, the polynomial chaos expansion method is combined with the Arnoldi-based 
Krylov subspace technique to reduce the model order. In this combined technique, only the order of the 
finite element model is reduced. The reduced order stochastic finite element technique is demonstrated 
to provide accurate results with significantly reduced computational effort. Based on the reduced order 
polynomial chaos expansion method, the effects of single and combined uncertainties are examined. 
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2. STOCHASTIC MODEL 
Using polynomial chaos expansion method, the stochastic system equations are transformed into 

deterministic equations as follows. The uncertain variables are initially projected onto a stochastic 
space spanned by a set of mutually orthogonal base polynomials Ψ𝑖 , which are functions of a 
multi-dimensional random variable 𝛏 = {𝜉1, 𝜉2, … , 𝜉𝑛}. Every random variable has a corresponding 
random space 𝜉𝑖 ∈ Ω𝑖 (𝑖 = 1,2, … ,𝑛). The uncertain variable χ can then be expressed as (8) 

χ =
=0

∞

∑
i

𝑥𝑖Ψ𝑖(𝛏)                                      (1) 

where 𝑥𝑖  are deterministic coefficients. The base polynomials Ψ𝑖  are a set of multi-dimensional 
polynomials in terms of 𝛏 with the following orthogonal relationship 

E[Ψ𝑖 ,Ψ𝑗] = 𝛿𝑖𝑖E[Ψ𝑖2]                                (2) 

𝛿𝑖𝑖 is the Kronecker delta and E represents the expected value in the probability space. Selection of 
the base polynomials Ψ𝑖 depends on the probability density function of each random variable (8). 

Using the orthogonality relationship, the unknown coefficients  𝑥𝑖  can be determined by 
stochastic Galerkin projection (8) 

𝑥𝑖 = 1
E[Ψ𝑖

2]∫ χΩ Ψ𝑖(𝛏)𝑑𝑑(𝛏), 𝑖 = 0,1,2, …∞                       (3) 

𝑑𝑑(𝛏) is the probability measure in the random space Ω. If the random variables 𝜉𝑖  are continuous and 
mutually independent, then 𝑑𝑑(𝛏) can be expressed as 

𝑑𝑑(𝛏) = 𝜌1(𝜉1)𝜌2(𝜉2) …𝜌𝑛(𝜉𝑛)𝑑𝜉1𝑑𝜉2 …𝑑𝜉𝑛                      (4) 

where 𝜌(𝜉) is the pdf of the random variable. 
 

2.1 Frequency Response Analysis using Polynomial Chaos Expansion Method 
The equation of motion for the dynamic system under external load is given by 

(−𝜔2𝐌+ 𝑗𝑗𝐂+ 𝐊)𝐗 = 𝐅                                (5) 

where 𝐌 is the mass matrix , 𝐂 is the damping matrix, 𝐊 is the stiffness matrix, 𝜔 is the excitation 
frequency, 𝐗 is the displacement vector, 𝐅 is the external force vector and 𝑗 = √−1 is the imaginary 
unit. Assuming hysteretic damping yields 

𝐂 = 𝜂𝐊
𝜔

                                     (6) 

where 𝜂 is the damping loss factor. The equation of motion then becomes 

(−𝜔2𝐌+ 𝑗𝑗𝐊 + 𝐊)𝐗 = 𝐅                              (7) 

The uncertain stiffness matrix, mass matrix, force and displacement are represented using truncated 
PCE as 

𝐊(𝜉𝐾) =
0

KN

=
∑
p

𝐊𝑝Ψ𝑝(𝜉𝐾),  𝐌(𝜉𝑀) =
0

MN

=
∑
q

𝐌𝑞Ψ𝑞(𝜉𝑀),  𝐅(𝜉𝐹) =
0

FN

=
∑
u

𝐅𝑢Ψ𝑢(𝜉𝐹),  𝐗(𝛏) =
0

XN

s =
∑ 𝐗𝑠Ψ𝑠(𝛏) (8) 

where 𝑁𝐾,  𝑁𝑀, 𝑁𝐹, 𝑁𝑋 are respectively the number of polynomials to represent the stiffness and 
mass matrices, the force and displacement vectors. 

Substituting the expansion equations given by Eq. (8) into Eq. (7), multiplying by a base 
polynomial Ψ𝑡(𝛏) and then using Galerkin projection results in 
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(1 + 𝑗𝑗)
0 0

K XN N

s= =
∑∑
p

𝐊𝑝𝐗𝑠E[Ψ𝑝(𝜉𝐾)Ψ𝑠(𝛏)Ψ𝑡(𝛏)]−𝜔2

0 0

M XN N

q s= =
∑∑ 𝐌𝑞𝐗𝑠E[Ψ𝑞(𝜉𝑀)Ψ𝑠(𝛏)Ψ𝑡(𝛏)] 

=
0

 
FN

=
∑
u

𝐅𝑢E[Ψ𝑢(𝜉𝐹)Ψ𝑡(𝛏)], 𝑡 = 0,1,2, … ,𝑁𝑡                        (9) 

where 𝑁𝑡  is the number of base polynomials. For each excitation frequency 𝜔, the deterministic 
coefficients of the polynomial chaos expansion for the displacement [𝐗0,𝐗1, … ,𝐗𝑁]T  are solved 
simultaneously.  

2.2 Model Order Reduction 
Model order reduction is implemented using the Arnoldi-based Krylov subspace technique to 

obtain a low-dimensional subspace with the transformation matrix 𝐒 ∈  ℛ𝑛×𝑚, which can approximate 
the original high-order vector 𝐙 by the reduced-order vector  𝐙𝑟 as follows (9,10) 

𝐙 = 𝐒𝐙𝑟 + 𝜺                                  (10) 

𝐒 × 𝐒T = 𝐈𝑛                                  (11) 

𝐙 ∈  ℛ𝑛×1 and 𝐙𝑟 ∈  ℛ𝑚×1 where  𝑚 ≪ 𝑛. 𝐈𝑛 ∈  ℛ𝑛×𝑛 is the identity matrix and  𝑚 is the reduced 
number of degrees of freedom. The superscript 𝑟 denotes the reduced-order matrix and 𝜺 ∈  ℛ𝑛×1 is 
the negligible error. The transformation matrix 𝐒 is generated by the block Arnoldi algorithm (10). 

Introducing Eqs. (10) and (11) into the stochastic system and projecting to the Krylov subspace 
yields 

(1 + 𝑗𝑗)
0 0

K XN N

p s= =
∑∑ 𝐊𝑝

𝑟𝐗𝑠𝑟E[Ψ𝑝(𝜉𝐾)Ψ𝑠(𝛏)Ψ𝑡(𝛏)]−𝜔2

0 0

M XN N

q s= =
∑∑  𝐌𝑞

𝑟𝐗𝑠𝑟E[Ψ𝑞(𝜉𝑀)Ψ𝑠(𝛏)Ψ𝑡(𝛏)] 

=
=
∑

0
 

FN

u
𝐅𝑢𝑟E[Ψ𝑢(𝜉𝐹)Ψ𝑡(𝛏)], 𝑡 = 0,1,2, … ,𝑁𝑡                       (12) 

where the reduced order mass matrix, stiffness matrix, displacement and force vectors are respectively 
defined as 

𝐌𝑟 = 𝐒T𝐌𝐌, 𝐌 ∈  ℛ𝑛×𝑛, 𝐌𝑟 ∈  ℛ𝑚×𝑚                      (13) 

𝐊𝑟 = 𝐒T𝐊𝐊, 𝐊 ∈  ℛ𝑛×𝑛, 𝐊𝑟 ∈  ℛ𝑚×𝑚                       (14) 

𝐗𝑟 = 𝐒T𝐗, 𝐗 ∈  ℛ𝑛×1, 𝐗𝑟 ∈  ℛ𝑚×1                         (15) 

𝐅𝑟 = 𝐒T𝐅, 𝐅 ∈  ℛ𝑛×1, 𝐅𝑟 ∈  ℛ𝑚×1                         (16) 

3. NUMERICAL RESULTS 
A rectangular simply supported plate of dimensions 𝐿𝑥 = 1350 mm, 𝐿𝑦 = 1200 mm and thickness 

ℎ = 5 mm, with material properties of steel (density 𝜌 = 7800 kg/m3, Young’s modulus 𝐸 = 210 GPa, 
Poisson’s ratio 𝑣  = 0.3) is examined. Damping is included using a complex Young’s modulus 
𝐸(1 + 𝑗𝑗) where 𝜂 = 0.03 is the damping loss factor. The finite element model is developed in 
ANSYS using element type SHELL63. The plate is excited by a point force of unity amplitude located 
at (0.6𝐿𝑥, 0.6𝐿𝑦). The mean and variance of the plate flexural velocity at a location of (0.4𝐿𝑥, 0.4𝐿𝑦) 
on the plate are examined. 

3.1 Uncertain Young’s Modulus 
Variability in the material properties is generated from an uncertain Young’s modulus 𝐸, which is 

assumed to follow a lognormal distribution with mean E[𝐸] = 210 GPa and variation coefficient 
𝛿𝐸 = 𝜎𝐸

E[𝐸]
= 5%, where 𝜎𝐸 is the standard deviation of Young’s modulus 𝐸. The uncertain Young’s 
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modulus is represented by the 3rd order Hermite PCE. The frequency responses are represented by the 
5th order Hermite PCE. Results obtained using the PCE method are compared with Monte Carlo (MC) 
simulations using 5000 samples. Upper and lower envelopes of the frequency responses are 
constructed from the polynomial chaos expansion expression given by Eq. (1). In each case, 30,000 
Hermite polynomial samples are generated and substituted into the PCE expression to obtain the 
maximum and minimum values of the plate flexural velocity. The original finite element model 
consists of 11,146 degrees of freedom. Considering a frequency range up to 100 Hz, the full model is 
reduced to an 80 degree-of-freedom system using the Arnoldi-based Krylov subspace technique. 

The mean and variance of the frequency responses for 𝛿𝐸 = 2% in the Young’s modulus are 
presented in Fig. 1. The results in Fig. 1 from the reduced order PCE method and MC simulations are 
very close to each other. Compared with MC simulations, errors in the frequency response around the 
resonant peaks using polynomial chaos expansion are attributed to the level of uncertainty of the 
structural property as well as the location of adjacent peaks. The resonant peaks become broader with 
increasing frequency due to structural damping. As the frequency increases, the uncertainty has an 
increasing effect on the resonances with a decreasing effect on their magnitude.  

The reduced order PCE method can obtain high accuracy with significantly reduced computational 
cost. For all simulations run on the same computer, the MC simulations take 48 hours and the reduced 
order PCE method takes 30 seconds. The significant improvement in computational cost using the 
model reduction technique is attributed to (i) the reduction in the degrees of freedom of the dynamic 
system from 11,146 to 80, thereby reducing the number of equations in the PCE analysis; (ii) the 
reduction in the size of the mass and stiffness matrices, which makes the matrix calculations faster. 

Based on the reduced order polynomial chaos expansion methodology, the effects of different 
uncertain Young’s modulus are examined. Figures 1(a)-1(c) present the mean and variance of the 
frequency responses as the level of uncertainty increases from 𝛿𝐸 = 2% to 𝛿𝐸 = 5% to 𝛿𝐸 = 10%, 
respectively. The frequency responses for uncertain Young’s modulus are represented by the 5th order 
Hermite PCE. As the frequency and uncertainty level increase, the envelopes grow wider, showing 
increasing effects of uncertain Young’s modulus. 

3.2 Uncertain Plate Thickness 
Variability in the geometric properties is examined by generating uncertainty in the plate thickness, 

which is assumed to follow a lognormal distribution with a mean value of ℎ = 5mm. As the tolerance 
of thickness is generally very small, values for the variation coefficient of the plate thickness 𝛿ℎ 
chosen here are also very small. In Figs. 2(a)-2(c), the variation coefficients of uncertainty in the plate 
thickness are 0.1%, 0.5% and 1% respectively. Uncertainty in the plate thickness is represented by the 
2nd order Hermite PCE. The thickness parameter influences both the mass and stiffness matrices of the 
finite element model, involving ℎ in the mass matrix and both ℎ and ℎ3 in the stiffness matrix. The 
frequency responses for uncertain thickness are represented by the 6th order Hermite PCE. The 
frequency responses are influenced by the level of uncertainty in the plate thickness across the entire 
frequency range. The effects of uncertain thickness increase with frequency and the level of 
uncertainty. Compared with uncertain Young’s modulus, the effect of uncertain thickness on the 
frequency responses is less significant for the variation coefficients values chosen here. 
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(a) 𝛿𝐸 = 2% 

 

 

(b) 𝛿𝐸 = 5% 

 

 
(c) 𝛿𝐸 = 10% 

 

Figure 1 – Mean and variance of the frequency response using reduced PCE and Monte Carlo simulations for 

uncertain Young’s modulus 
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(a) 𝛿ℎ = 0.1% 

 

 
(b) 𝛿ℎ = 0.5% 

 

 

(c) 𝛿ℎ = 1% 
 

Figure 2 – Mean and variance of the frequency response using reduced PCE and Monte Carlo simulations for 

uncertain thickness 
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3.3 Uncertain Young’s Modulus and Plate Thickness 
To investigate the effect of combined uncertain parameters, the plate is now randomized by both 

Young’s modulus and thickness as listed in Table 1. In each case, the frequency responses are 
represented by the 6th order 2-dimensional Hermite PCE. Figures 3 and 4 correspond to the 
frequency responses for cases 1 and 2 respectively, whereby the uncertain Young’s modulus is kept 
fixed and the uncertain thickness increases. Comparing Figs. 3 and 4 shows that increasing the 
uncertain thickness only slightly affects the envelopes of the maximum and minimum responses 
around the resonant peaks. However, comparing Figs. 3 and 5 shows that increasing uncertainty in 
the Young’s modulus affects the results across the entire frequency range. The effect of Young’s 
modulus is dominant for the values of combined uncertainty examined here. 

 

Table 1 – Combined uncertain parameters 
Case 𝛿𝐸 𝛿ℎ 

1 2% 0.1% 
2 2% 0.5% 
3 5% 0.1% 

4. CONCLUSIONS 
This paper examines a simply supported plate with uncertainties in its Young’s modulus and 

thickness. The frequency responses of the plate flexural velocity are obtained, using the polynomial 
chaos expansion method. To further improve the computational efficiency, the Arnoldi-based Krylov 
subspace technique is combined with polynomial chaos expansion method to reduce the model order. 
Compared with Monte Carlo simulation, this combined stochastic technique is shown to work very 
well with significantly reduced computational cost. Both the uncertain Young’s modulus and uncertain 
thickness are shown to affect the plate flexural responses across the entire frequency range. The effect 
of uncertain thickness is less significant for the values of uncertainty examined here. 

ACKNOWLEDGEMENT 
Béatrice Faverjon gratefully acknowledges the French Education Ministry, University of Lyon, 

CNRS, INSA of Lyon and LabEx iMUST for the CRCT and the out mobility grant. 

REFERENCES 
 
1.  Cicirello A, Langley RS. The vibro-acoustic analysis of built-up systems using a hybrid method with 

parametric and non-parametric uncertainties. J Sound Vib. 2013; 332: 2165–2178. 
2.  Fishman GS. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer; 1995. 
3.  Gao W, Kessissoglou NJ. Dynamic response analysis of stochastic truss structures under 

non-stationary random excitation using the random factor method. Comput Meth Appl Mech Eng. 
2007; 196: 2765-2773. 

4. Ghanem RG, Spanos PD. Stochastic Finite Elements: A Spectral Approach. New York: 
Springer-Verlag; 1991. 

5. Soize C. A comprehensive overview of a non-parametric probabilistic approach of model uncertainties 
for predictive models in structural dynamics. J Sound Vib. 2005; 288(3): 623-652. 

6. Kessissoglou NJ, Lucas GI. Gaussian orthogonal ensemble spacing statistics and the statistical overlap 
factor applied to dynamic systems. J Sound Vib. 2009; 324: 1039-1066. 

7.  Wiener N. The homogeneous chaos. Am J Math. 1938; 60: 897-936. 
8.  Sepahvand K, Marburg S, Hardtke HJ. Uncertainty quantification in stochastic systems using 

polynomial chaos expansion. Int J Appl Mech. 20102; 2: 305-353. 
9. Bai ZJ. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. 

Appl Numer Math. 2002; 43(1-2): 9-44. 
10. Han JS, Rudnyi EB, Korvink JG. Efficient optimization of transient dynamic problems in MEMS 

devices using model order reduction. J Micromech Microeng. 2005; 15(4): 822-832. 
11. Sinou JJ, Faverjon B. The vibration signature of chordal cracks in a rotor system including 

uncertainties. J Sound Vib. 2012; 331(1): 138-154. 



Page 8 of 8  Inter-noise 2014 

Page 8 of 8  Inter-noise 2014 

 
 
Figure 3. Mean and variance of the frequency response using reduced PCE and Monte Carlo simulations for 

two uncertain parameters (δE = 2%, δℎ = 0.1%) 
 

 
 
Figure 4. Mean and variance of the frequency response using reduced PCE and Monte Carlo simulations for 

two uncertain parameters (δE = 2%, δℎ = 0.5%) 
 

 
 
Figure 5. Mean and variance of the frequency response using reduced PCE and Monte Carlo simulations for 

two uncertain parameters (𝛿𝐸 = 5%,𝛿ℎ = 0.1%) 
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