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ABSTRACT 

In this paper a new semi-analytic numerical method i.e. Analytical Substructure Method (ASM) is 

established to study the vibration characteristics of conical-cylindrical-spherical combined shell with 

arbitrary boundary conditions in vacuum. First, according to the structure types, the whole structure is 

divided into substructures: conical shell, annular circular plates, bulkheads, cylindrical shells, open spherical 

shell. Second, by using power series method, annular circular plate theory, and wave propagation method and 

by introducing auxiliary functions, the dynamic equations of the substructures are formed respectively. Then 

using the boundary conditions and the displacement and force continuity conditions between the 

substructures, the dynamic equation of the whole structure is established. Finally, the vibration 

characteristics of the structure are obtained. By comparison with computational results obtained from a finite 

element method, the accuracy and the efficiency of ASM are verified. Three common boundary conditions of 

the structure are discussed in numerical analysis. The paper demonstrates that ASM is applicable for 

complex structures with all tested boundary conditions, providing a new approach and idea to study the 

vibration characteristics of complex combined shells. 
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1. INTRODUCTION 

Conical-cylindrical-spherical(C-C-S) combined shell is the simplified model of underwater vessel. 

The prediction of vibration characteristics of underwater vessel is regarded as the theoretical 

foundation and important criterion for quantitative acoustic design and noise control. In order to 

overcome the structural boundary errors which would be brought by single segment models , The 

C-C-S combined shell model should be built and solved uniformly. At present the prediction methods 

for vibration characteristics of underwater vessel are analytical method (displacement method, energy 

method and wave propagation method), numerical simulation (finite element method  (FEM) / 

boundary element method (BEM)) and model testing. Compared with the numerical method and 

testing method, analytical method which is fast in solving speed, less cost, easy to reveal the 

mechanism and suitable for multi-scheme calculation and optimization, is mostly attractive. 

Due to the structure complexity of combined shell, using completely analytical method to study 

would be very difficult. Therefore the main theoretical method on C-C-S combined shell is a 

semi-analytical and semi-numerical method at present. In 2008, the active control on radiated sound 

pressure of C-C-S combined shell in low frequencies was researched by Pan et. al. (1) , who simulated 

propeller excitation by exerting an axial exciting force on the end of the conical shell. The 

axisymmetric vibration of n = 0 was considered, but the bending vibration of n > 0 was not considered. 
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In 2009, Caresta and Kessissoglou (2) studied vibro-acoustic characteristics of multi-segmental 

cylindrical shell by axial excitation in low frequencies. In their work, the stiffeners were used by 

orthotropic method that the weight of stiffeners were even distributed in the shell surface, the stiffness 

of stiffeners was acted as orthotropic stiffness of the shell. The orthotropic method of stiffeners is 

suitable for conditions with the equal spacing, small size, and dense stiffeners. In 2010, the vibration 

characteristics of conical-cylindrical combined shell were reported by Caresta and Kessissoglou (3). 

The cylindrical shell and conical shell respectively used wave method and the power series method. 

Then based on the continuity conditions of the conical-cylindrical junction, the coupled vibration 

equation of the combined shell was established. The stiffeners were still used by orthotropic method. 

In 2012, Qu et. al. (4) investigated the vibration characteristics of conical-cylindrical combined shell 

with different boundary conditions by energy method and improved difference method. Due to the 

coupling of structures, the whole energy equation needs solute uniformly. The calculated speed 

increased rapidly with the complexity of the structure. In addition, the mechanism analysis was not 

easy to conduct by difference method. 

On the basis of the above literatures, and in order to solve the problems existing in the previous 

researches, using the conception of substructure division in FEM and the thought of “the structure 

displacement function needs satisfy its dynamic equation” in traditional analytical method for 

references, a new semi-analytical and semi-numerical method named Analytical Substructure Method 

(ASM) is formed in this paper. The principle of ASM is to divide the C-C-S combined shell into 

different substructures according to the type of structures (beams, plates, shells, etc.). Each 

substructure displacement function needs to satisfy the corresponding dynamic equation. Boundary 

conditions and continuity conditions between substructures are used to form the final dynamic 

stiffness matrix to calculate the vibration responses of the whole structure. ASM is suitable for the 

condition of structural parameters varying along the length direction. This method has the advantages 

of division flexibility exists in FEM, solution rapidity and easy to reveal the mechanism exist in 

analytic method. The stiffeners act as discrete components processing (5) in the paper, and would be 

more correct than as orthotropic processing in previous studies. Furthermore, the method can deal with 

axisymmetric vibration, as well as non-axisymmetric bending vibration. Thus, ASM is a very effective 

method for solving the vibration characteristics of C-C-S combined shell. In the numerical analysis of 

the paper, by comparison with computational results obtained from FEM, the correctness and the 

affectivity of ASM are verified. Then the influences of three boundary conditions of combined shell 

are discussed in the end. 

2. BASIC CONCEPT AND PROCEDURE OF ASM 

In this paper, ASM is developed to analyze vibration characteristics of ring stiffened C-C-S 

combined shell for arbitrary boundary conditions shown in Figure 1. Firstly, the C-C-S combined shell 

is divided into different substructures: conical shell, ordinary ribs, large frame rib, bulkheads, 

cylindrical shells, open spherical shell. The cylindrical shell and the conical shell, the motions of 

which are described by the equations of Donnell-Mushtari theory, are divided into substructures 

according to the positions of discontinuities. Ordinary ribs, large frame rib and bulkheads are divided 

into separate substructures, the motions of which are described by the equations of circular plates. For 

open spherical shell, the five equations of motions describing the spherical shell are simplified to three 

uncoupling equations by introducing auxiliary functions. The dynamic field variables in the 

substructures of cylindrical shells are expanded by wave functions given in references (5, 6, 7) and 

those in substructures of ordinary ribs, large frame rib and bulkheads are expanded by wave functions 

given in references (8). The displacements in substructures of the conical shell are expanded in the 

form of power series given in references (3, 9, 10, 11). The displacements in substructures of spherical 

shell can be presented in the form of combinations of Bessel Functions by solving three uncoupling 

equations in reference (12). Then equilibrium and compatibility conditions between different 

substructures are established. Combined with boundary conditions of the C-C-S combined shell, the 

final matrix can be formed to solve the vibration displacements.  

2.1 Substructure Division of C-C-S Combined Shell 

Substructure divisions of C-C-S combined shell are shown in Figure 2. According to the structure 

types and the position of excitation force, the whole structure is divided into different substructures: 

conical shell, ordinary ribs, large frame rib, bulkheads, cylindrical shells, open spherical shell. In 

Figure 1, five bulkheads divide the whole structure into six sections: one conical shell section, four 
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cylindrical shell sections, and one spherical shell section. Thus there are 17 ordinary ribs in conical 

shell section, 75 ordinary ribs, 5 bulkheads, one large frame rib in four cylindrical shell sections, and 

none ribs in open spherical shell. As the excitation force is located just on a certain ordinary rib 

position, no additional substructure need to add in the total substructures. The numbers of 

substructures are shown in Table.1. The total number of stiffener substructures is N r= Nr1+ Nr2+ Nr3+ 

Nr4=98, and the total number of shell substructures is N s= Ns1+ Ns2+ Ns3=99. The relationship between 

the number of stiffener substructures and the number of shell substructures are as follows: Ns=Nr+1. 

Table 1 – The numbers of substructures in C-C-S combined shell 

Description of section Description of substructures Number of substructures 

One conical shell section 
ordinary ribs Nr1=17 

conical shells Ns1=18 

Four cylindrical shell sections 

ordinary ribs Nr2=75 

large frame rib Nr3=1 

bulkheads Nr4=5 

cylindrical shell Ns2=80 

One spherical shell section open spherical shell Ns3=1 

Total number of Shell substructures  Ns=Ns1+Ns2+Ns3=99 

 

18# 34# 50# 66# 82# 98#

large f rame rib

spherical

shell

conical shell

rib

cylindrical shellbulkhead F

driving force
 

Figure 1 – Sketch of conical-cylindrical-spherical combined shell  

 

substructure of
conical shell

substructure of
cylindrical shell

substructure of bulkhead

substructure of
spherical shell

substructure of bulkhead

 
(a) Sections of C-C-S combined shell 

 

substructure of cylindrical shell

substructure of large frame rib

substructure of ordinary rib

substructure of cylindrical shell

substructure of cylindrical shell

 
(b) Substructure divisions of ring stiffened cylindrical shell or conical shell 

Figure 2 – Substructure divisions of C-C-S combined shell 

2.2 Equations of Substructures 

2.2.1 Equations of Cylinder Shell 
In this work, Donnell-Mushtari equations are used to describe the motions of cylindrical shell as 

follows (5): 
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The radius of the cylindrical shell is designated by a, and the thickness by h, k=h
2
/12a

2
, u, v, and w are 

respectively the axial, circumferential and normal displacements. The axial and circumferential coordinates 

are x, , and /x x a  is the non-dimensional axial coordinates. The mass density of the cylindrical shells 

is designated by ρ, Young’s modulus by E and Poisson ratio by . 

The displacements and the internal forces of the cylindrical shells are expanded as the 

superposition of eight wave functions and eight undetermined coefficients. The detailed solving 

process can be found in references (5, 6, 7). The displacements and forces continuity conditions which 

are used to form the final matrix to calculate the frequency responses of the structure ar e given in 

section 2.3.  

2.2.2 Equations of Ordinary Rib, Large Frame Rib and Bulkhead 
The ordinary rib, large frame rib and bulkhead are treated as separate substructures. Their governing 

equations are the same, all described by the equations of circular plates whose bending and in-plane 

motions are described in Eq. (2). Annular circular plate with inner radius a1 and outer radius a (also the 

radius of the cylindrical shell) is used to establish the mathematical model of ordinary ribs and large frame 

rib. wp,, up and vp are the axial displacement, radial displacement and circumferential displacement of the 

plate respectively. Circular plate with radius a is used to establish the mathematical model of bulkheads. 

The difference between the annular circular plates and the circular plates is that there are no free edges at 

the inner radius of circular plates. 
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where Dp =Ephp
3
/12(1-vp

2
) is the flexural rigidity. hp is the plate thickness. Ep, ρp and νp are respectively the 

Young’s modulus, density and Poisson’s ratio. 
   The displacements and the internal forces of the ordinary ribs, large frame rib and bulkheads are 

expanded as the superposition of the combination of Bessel Functions. The detailed solving process 

can be found in reference (8). Combined with the displacements and forces continuity conditions of 

stiffeners (the ordinary ribs, large frame rib or bulkheads) and the shells (cylindrical shells or conical 

shells) as shown in section 2.3, the final stiffness matrix can be formed. 

2.2.3 Equations of Conical Shell 
The motions of conical shells are described by Donnell-Mushtari equations (10): 

2
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where uc, vc and wc are the displacements of conical generatrix direction, circumferential direction and 

normal direction respectively. ccL = [Ec /ρc(1-vc
2
)]

1/2 
is the longitudinal wave velocity of the conical shell. Lij 

is the differential operator which is expressed in reference (10). Ec, ρc and νc are respectively the Young’s 

modulus, density and Poisson’s ratio of the conical shell. 

The displacements of the conical shells are expanded in the form of power series. The detailed 

solving process can be found in references (3, 9, 10, 11). Combined with the boundary conditions and 

the displacements and forces continuity conditions of the conical shells as shown in section 2.3, the 

final matrix can be built.  
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2.2.4 Equations of Spherical Shell 
Based on Flügge theory, the five equations describing the spherical shell are simplified to three 

uncoupling equations by introducing auxiliary functions (12): 
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where hsp and Rsp are the thickness and radius of the spherical shell.  rsp and wsp are the radial coordinate 

and displacement of spherical shell respectively.
 
Esp, ρsp and νsp are respectively the Young’s modulus, 

density and Poisson’s ratio of spherical shell. ω is excitation angular frequency. ,  are the introduced 

auxiliary functions. r1, r2, r3 and T are the coefficients that can be seen in reference (12). λsp/ω
2
=ρsp(1-νsp

2
)/ 

Esp , kδ=6/5 is average shear coefficient, k1=1+ hsp
2
/(12 Rsp

2
), kr=1+3hsp

2
/(20 Rsp

2
), S,r= S/ r, S=P-F ,and P, 

F are the longitudinal and latitudinal loads respectively. 

The solutions to the three uncoupling equations can be presented in the form of combinations of 

Bessel Functions. The detailed solving process can be found in reference (12). The variables of the 

Bessel Functions can be obtained by solving the three characteristic equations corresponding to th e 

three uncoupling equations. Then combined with the boundary conditions and continuity conditions as 

shown in section 2.3 the final matrix equation can be obtained.  

2.3 Boundary Conditions and Continuity Conditions 

2.3.1 Boundary Conditions 

2.3.1.1 The End of Conical Shell 

As shown in Figure 3, the conical shells with arbitrary boundary conditions have four displacement 

constraints and four force or moment constraints, i.e., 

uc=0, vc=0, wc=0, θc=0    and     Vx,c=0, Mx,c=0, Nxθ,c=0, Nx,c=0             (5) 

where θc designates the twisting angle and Mx,c, Vx,c, Tx,c, Nx,c denotes bending moment, transverse shear, 

tangential shear and axial force per unit length of the conical shell. The displacements and forces’ 

detailed expressions can be found in reference (10). Combination of these eight boundary conditions 

can present arbitrary boundary conditions. For example: 

For clamped boundary conditions,                 uc=vc=wc=θc=0                      (6) 

For shear diaphragm boundary conditions,          vc=wc=Vx,c=Mx,c=0                    (7) 

For free boundary conditions,                    Vx,c=Mx,c=Nxθ,c=Nx,c=0                 (8) 

2.3.1.2 The End of Spherical Shell 

As shown in Figure 3, for the open end of the spherical shell, there are only five unknown 

displacement function coefficients. At its open end there are five displacement boundary conditions 

and five force boundary conditions as follows: 

       
0

sp sp sp spr sp ru u w
          and 

 
0

sp sp sp sp sp sp spr r r r rN N M M Q
          .  

     
(9) 

Parameters in Eq. (9) are displacements and internal forces of spherical shell shown in Figure 3. The 

displacements and forces’ detailed expressions can be found in reference (12). Combination of these 

boundary conditions can express arbitrary boundary conditions. For example: 

For clamped boundary conditions,                       

For shear diaphragm boundary conditions,                         

For free boundary conditions,                        

2.3.2 Continuity Conditions 
As shown in Figure 3, continuity conditions of C-C-S combined shell should be unified to the 

cylindrical coordinates to describe. 

2.3.2.1 Conditions at the Junction of Cylindrical Shell and Conical Shell 

Considering the bulkhead, the displacements and forces continuity conditions at the junction of 

cylindrical shell and conical shell are given in Eq. (10). 

Parameters in Eq. (10) are displacements and internal forces of cylindrical shell and conical shell as 

0
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shown in Figure 3. The displacements and forces’ detailed expressions can be found in references (5, 10). 

The subscripts ‘c’ and ‘p’ denote conical shell and bulkhead respectively. 
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(a) Displacements at C-C-S combined shell junctions 
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(b) Internal forces at C-C-S combined shell junctions 

Figure 3 – Displacements and internal forces at C-C-S combined shell junctions 

2.3.2.2 Conditions at the Junction of Cylindrical Shell and Spherical Shell 

Considering the bulkhead, the displacements and forces continuity conditions at the junction of 

cylindrical shell and spherical shell are given as follows: 
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Parameters in Eq.(11) are displacements and internal forces of cylindrical shell and spherical shell as 

shown in Figure 3. The displacements and forces’ detailed expressions can be found in references (5, 

12).The subscripts ‘r’ and ‘p’ denote spherical shell and bulkhead respectively.  

2.3.2.3 Conditions inside of the Cylindrical Shell and Conical Shell 

Inside of the cylindrical shell, the cylindrical shell is divided into two segments by the ordinary ribs 

or large frame ribs or bulkheads as shown in Figure 2 and Figure 4 where continuity equations must be 

satisfied. The displacements of the two adjacent ends of the cylindrical shells must be equal, which can 

lead to the following relationships. 

                               
RLRLRLRL uuvvww   ,,,                    (12) 

The superscripts ‘L’ and ‘R’ denote regions of the cylindrical shell to the left and right of the 

discontinuities under consideration. 

The annular circular plate (i.e. ordinary rib or large frame rib), has one free edge at the inner radius  

(r=a1) where boundary conditions must be applied, ie: 
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At the outer radius of the annular circular plate which is shown in Figure 4, the continuity 

conditions of displacements and forces between the cylindrical shells and the annular circular plates 

can be expressed as Eq. (14) and Eq. (15): 
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For circular plate (i.e. bulkhead), only continuity conditions Eq.(14) must be satisfied for no 

boundary condition at the inner radius is applied because there are no free edges.  The displacements 

and forces’ detailed expressions can be found in reference (5, 6, 8). 
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Figure 4 – Annular circular plate and interaction forces 

Inside of the conical shell, the continuity conditions are similar to those inside of the cylindrical 

shell as above, so they won't be descripted in detail here. 

2.3.2.4 Conditions at the Position of Excitation Force 

There are two cases about the position of excitation force. In one case, the excitation force is 

located at the non-stiffened position. In the other case, the excitation force is located at the stiffened 

position (ordinary rib or large frame rib or bulkhead). In either case, the shell should be divided into 

two parts at the excitation force position. The two cases’ continuity conditions at the excitation force 

position can be expressed in Eq. (16) and Eq. (17) respectively. 
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where NL, SL, TL, ML
 and NR, SR, TR, MR are the internal forces and moment on the left side and right side of 

the division shell respectively. Npx, Npr, Npθ, Mp are the internal forces and moment of the stiffeners. f 

denotes the excitation force. 

2.4 Matrix Formed for Calculating Structure Vibration Response 

The above boundary conditions and the continuity conditions are arranged in matrix form for each 

circumferential number n. The matrix is finally arranged as follows: 

                                    [K]{A}= {f}                                    (18) 

where {A} is the 8Ns1 (Ns is the total number of shell substructures as shown in 2.1 section of the paper) 

unknown coefficient vector describing the motions of C-C-S combined shell and [K] is the dynamic 

stiffness matrix of the whole combined shell shown in Eq.(19). 
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The initial and final blocks [B1]48 and [BNs] 48 are expressed in terms of displacements and/or forces, 

depending on the boundary conditions at each end of the C-C-S combined shell. Combination of eight 

boundary conditions in 2.3.1 section can present arbitrary boundary conditions. Clamped, shear-diaphragm 

and free boundary conditions are considered in the following numerical Analysis. The 4×8 matrix blocks 

[Dk(0)] 48 and [Dk(bk)] 48 are the kth shell substructure’s beginning and end  displacements continuity 

conditions shown in 2.3.2 section. The 4×8 matrix blocks [Fk(0)] 48 and [Fk(bk)] 48 are the kth shell 

substructure’s beginning and end forces continuity conditions shown in 2.3.2 section. bk designates the 

length of the kth shell segment of the combined shell. 

The undetermined coefficient vector {A} can be obtained by solving Eq. (18). Then substitute the 

kth segment solved coefficients into the kth segment shell’s displacement functions, the vibration 

responses of the combined shell can be worked out. 

3. RESULTS AND DISCUSSIONS 

3.1 Validity of ASM 

The ASM model is developed to calculate the vibration responses of C-C-S combined shell for 

clamped-clamped(C-C) boundary, simply supported-simply supported (SD-SD) boundary, free-free 

(F-F) boundary with FEM results to show the validity of ASM model. The computation model is 

considered here as shown in Figure 1. The geometry and material properties of the C-C-S combined 

shell are listed in Table 2. The whole structure has the same material.  

Table 2 – Geometry dimensions and material properties of the C-C-S combined shell 

Name of parameters Unit Value  Name of parameters Unit Value 

Radius of conical shell at 

small end 
m 0.5 

 
Width of frame rib m 0.021 

Radius of conical shell at big 

end (i.e. Radius of cylindrical 

shell and spherical shell) 

m 3.5 

 

Depth of frame rib m 0.8 

Length of conical shell  m 10.8  Position of frame rib / #50 

Thickness of conical shell  m 0.016  Thickness of bulkhead m 0.03 

Length of cylindrical shell m 48 
 
Position of bulkhead / 

#18, #34, #66, 

#82, #98 

Thickness of cylindrical shell m 0.032  Position of driving force / #62 

Length of spherical shell m 3.5  Direction of driving force / radial direction 

Thickness of spherical shell m 0.03  Amplitude of driving force N 1 

Width of ordinary ribs m 0.014  Density kg/m
3
 7800 

Depth of ordinary ribs m 0.25  Young’s modulus Pa 2.1×10
11 

Spacing of ordinary ribs m 0.6  Poisson ratio / 0.3 

Considering the speed of FEM calculation, the calculated frequencies are range from 1Hz to 300Hz 

with 1Hz step. 

The FE software ANSYS is used to calculate frequency responses of the C-C-S combined shell. In 

order to ensure the convergence of results calculated by FEM, three different kinds of meshes shown in 

Table 3 are used to calculate frequency responses of combined shell with the results shown in Figure 

5(a). The ASM model is divided into different substructures which are also shown in Table 1. From 

Table 3 we can see that the number of substructures in ASM model is much less than the number of 

elements used in FEM models, and the calculation speed of ASM is much faster than that of FEM. 

Figure 5(a) shows that Mesh 2 which can achieve both high computation efficiency and adequate 

converged results in the range of calculation frequency is used in the following analysis. 

In order to ensure the convergence of results calculated by ASM, The maximum circumferential 

wave numbers nmax are offered as 10, 15, 20, 25 respectively. Figure 5(b) shows the comparison of 

mean square velocity level of the combined sell with four different maximum circumferential wave 

numbers. From above figure we can see that the ASM convergence is desirable in the range of 

calculation frequency when the maximum circumferential wave number is 20, which is used in the 

following ASM calculation.  

Figure 6 shows the comparison of frequency response of the combined shell between ASM results 

and FEM results. As we can see from the figure, the results are in good agreement which show the 
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validity of ASM model.  

Table 3 – FEM models with different meshes and shell substructure divisions of ASM models 

Method ASM FEM  

Comparison of the items Number of shell substructures  
Number of elements 

Mesh 1 Mesh 2 Mesh 3 

Value 99 34563 62070 97059 
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Figure 5 – Convergence analysis of the combined shell using FEM and ASM 
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(a) Driving point velocity admittance            (b) Mean square velocity 

Figure 6 – Comparison on frequency response of C-C-S combined shell using FEM and ASM 

3.2 Effect of Boundary Conditions 

Figure7 shows the comparisons on vibration characteristics of C-C-S combined shell with clamped, 

simply supported and free boundary conditions. It is observed that boundary conditions are of little 

influence on the vibration characteristics of combined shell in general, especially above 100Hz. 

Moreover, the vibrational curves with simply supported boundary condition are much closer to that of 

clamped boundary condition in the whole calculated frequency range. The small vibrational 

differences of three boundary conditions are the position of the first few resonant peaks in low 

frequency range (below 100Hz), and the first few resonant peaks shift to lower frequencies with the 

relaxation of boundary constraints.   

4. CONCLUSIONS 

 ASM, which can be regarded as an effective semi-analytical and semi-numerical method, has been 

presented to analyze the vibration characteristics of C-C-S combined shell with arbitrary boundary 

conditions. In contrast with the FEM, the size of ASM final matrix is much smaller than the matrix 

formed in FEM, thus the calculation speed of ASM is much faster than that of FEM. Numerical 

calculations of ASM model show good agreement with the results calculated by FEM.  

The influence of boundary conditions on vibration characteristics of combined shell is very small, 

especially at high frequencies. The small vibrational differences appear at the positions of resonant 

peaks in the low frequency range. More specifically, the first few resonant peaks shift to lower 
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frequencies with the relaxation of boundary constraints. This indicates that the influence of boundary 

conditions can be ignored at the high frequency. 

ASM is capable of fast prediction of vibration characteristics of complex combined shell structure. 

It is applicable for complex structures with any boundary conditions, which can provide an analyzed 

method for calculation vibration response of multi-segmental complex shell. 
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(a) Driving point velocity admittance                (b) Mean square velocity 

Figure 7 – Comparison on frequency response of C-C-S combined shell with three boundary conditions       
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