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ABSTRACT 
This paper is concerned with the modeling and free vibration analysis of coupled plates of various types, 
which includes T-shape plates, cross shape plates and a panel-linked double-panel structure. The in-plane 
vibration and bending vibration are considered in coupled structures. The vibration problems are solved 
using an improved Fourier series method in which the in-plane displacement and bending displacement are 
expressed as the superposition of a double Fourier cosine series and several supplementary functions to 
ensure (improve) the uniform convergence (rate) of the Fourier series expansion. The dynamic responses of 
the coupled plates are obtained using the Rayleigh-Ritz procedure based on the energy expressions for the 
coupled system. The accuracy and effectiveness of the proposed method are validated through numerical 
examples and comparison with results obtained by the finite element analysis. 
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1. INTRODUCTION 
The coupled plates including T-shape plates, cross shape plates and a panel-linked double-panel 

structure exist in various engineering occasions, such as ship hulls, aircraft cabins and building 
structures. The modeling and free vibration analysis of coupled plates capture the growing attentions 
from researchers and design engineers. This kind of problem can be solved by the finite element 
method (FEM), lacking of flexibility with the changing parameter in the analysis. 

The analysis of vibration characteristics were investigated by researchers with the well-known 
numerical methods. In the existing investigations on coupled plates, considerable contributions (1-3) 
were made by researchers. Wang et al. (4) adopted a substructure approach to study the vibration of 
L-shaped plates and investigate the power flow characteristics of L- shaped plates. Bercin (5) studied 
the effects of in-plane vibrations the energy flow between coupled plates. Cheng et al. (6) made a 
research on energy transmission in a mechanically-linked double-wall structure coupled to acoustic 
enclosure. Chen and Jin (7) investigated the vibration behaviors of a box-type structure built up by 
plates. A combination of a traveling wave and modal solution was used by Kessissoglou (8) to 
describe the flexural and in-plane displacements functions of the plates in L-shaped plates. Cuschieri 
(9) used a mobility approach to investigate structural power-flow of an L-shaped plate, then Cuschieri 
and McCollum (10) used the mobility power flow approach to analyze in-plane and out-of-plane 
waves power transmission through L-plate junction. Dimitriadis and Pierce (11) proposed an 
analytical solution for the power exchange between strongly coupled plates under random excitation. 
The concept of receptance (a numerical approach) proposed by Azimi et al. (12) were used by Farag 
and Pan (13) to analyze effects of the coupling angle for the coupling edge, which were extended by 
Kim et al. (14) to investigate the interactions of transmission of bending waves in coupling 
conjunction for rectangular plates.  

In the existing techniques, some assumptions are used. Modeling the real-life plate structures is 
more of practical significance. In this paper, the modified Fourier series method proposed by Li (15) is 
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applied for the modeling and the free vibration analysis for coupled plates. The Rayleigh's method is 
applied to calculate the coefficients of the modified Fourier series. The boundary conditions and 
coupling conditions can be simulated by four types boundary springs at edges and four types coupling 
spring at coupling conjunctions. The convergence and accuracy of the current method are proved by 
comparing the natural frequencies and mode shapes with the finite element analysis results. The effect 
of dimensional parameters and the coupling conditions are investigated.  

2. THEORETICAL FORMULATIONS 

2.1 Description of the models  
The Analytical models for the coupled T-shape plates structure, cross shape plates structure and 

panel-linked double-panel structure under investigation, which are composed of elastic plates, are 
shown in Fig.2.1(a), (b) and (c), respectively. The geometry and the coordinate systems for these 
plates structure were showed in Fig. 2.1, in which, four types of uniform boundary spring are 
introduced to complete model the general restrained boundary condition. Similarly, along the 
structural conjunction, four types of uniform coupling spring, which are cK , 1ck , 2ck and 3ck ,are 
introduced to completely model the coupling effect, and θ is the coupling angle of coupled plates 
structure. The displacements of the elastic plates with respect to this coordinate system are described 
by u , v and w in the x , y and z directions, respectively.  
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(a) –T-shape plates structure                   (b) –cross shape plates structure    
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(c) –the panel-linked double-panel structure 

Fig. 2.1 – Analytical models for coupled plates structure  

2.2 Theory for bending and in-plate vibration of plates 
The partial differential equations for the bending and in-plate displacement functions of plate 1 are 

depicted as: 
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where 1ρ and 1 ,h  respectively, denote the mass density and the thickness of plate 1, 
3 2

1 1 1 1(12(1 ))D E h µ= − is the bending rigidity of plate 1 , 1E  and 1µ , respectively, are the Young's 

modulus and the Poisson ratio of the plate 1, ∇ is the Laplace operator, 1 1 1 1/ (1 )Lc E ρ µ= −  is the 

p-wave speed in plate 1 structure and ω is the angular frequency of plate. 
The boundary conditions for the elastic plate are: 

The boundary conditions for the elastic plate considering in-plate direction are:  
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where 1µ is the Poisson ratio of plate 1, k and K , respectively, denote the stiffness of the 
translational restraining spring and the rotational restraining spring. The effect and the position are 
represented by the subscripts.  
2.2.1 Improved series representations of the displacement functions 

The displacement functions can be described by a two-dimensional Fourier cosine series method. 
However, discontinuity problems would be encountered in the displacement partial differential along 
the edges by used such a traditional Fourier cosine. To overcome the difficulty, the bending 
displacement function is depicted by an improved Fourier series method, which is the superposition of 
a two-dimensional Fourier cosine series and eight supplementary functions. Therefore, The 
displacement components of plate 1, 1w , 1u  and 1v  can be described as: 
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where 1 / 1,m Lx m Lxλ π= 1 / 1n Ly n Lyλ π= , n and m are all integers, describing the spatial 

characteristic of a particular mode, 1m nA , 1m nB , 1m nC , 1 k ma , 1 k na , 1k nb , 1k mb , 1k nc and 1k mc are the 
modal amplitude constants for mode ( , )m n , The expressions for the supplementary functions relating 
to 1x are defined as: 
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 It is uncomplicated to prove that 

( ) ( ) ( ) ( )1 1 3 1 2 1 4 1' 0 ''' 0 ' 1 ''' 1 1,Lx Lx Lx LxLx Lxζ ζ ζ ζ= = = =  (17) 
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other related partial derivative supplementary functions are zero, The expressions for the supplementary 
functions relating to y

 
can be obtained by substituting x with y in Eq. (15). These conditions make related 

derivative of the displacement function smooth and continuous in the whole solving domain. 

2.3 Solution procedure of coupled plates   
In this work, the unknown expansion coefficients of the displacement functions for the coupled 

plates structure system are calculated by using the Rayleigh–Ritz procedure, which is actually 
equivalent to solve the governing equations , the boundary conditions and coupling conditions 
directly,  

The Lagrange function for the coupled T-shape plates structure, cross shape plates structure and the 
panel-linked double-panel structure ,respectively, were written as: 

, ,t t t c c c g g gL U T L U T L U T= − = − = −  (19) 
where U and ,T  respectively, are the total potential energy, the total kinetic energy of coupled 
plates structure system, the subscript t, c and g represent the coupled T-shape plates structure, cross 
shape plates structure and the panel-linked double-panel structure, respectively. 

 
1 2 1 2t bending bending in pnel in pnel couplingU U U U U U− −= + + + +  (20) 

1 2 1 2t bending bending in pnel in pnelT T T T T− −= + + +
 

(21) 

1 2 3 1 2 3 1 2
c c

c bending bending bending in pnel in pnel in pnel coupling couplingU U U U U U U U U− − −= + + + + + + +  (22) 

1 2 3 1 2 3c bending bending bending in pnel in pnel in pnelT T T T T T T− − −= + + + + +  (23) 

1 2 3 1 2 3 1 2
g g

g bending bending bending in pnel in pnel in pnel coupling couplingU U U U U U U U U− − −= + + + + + + +  (24) 

1 2 3 1 2 3g bending bending bending in pnel in pnel in pnelT T T T T T T− − −= + + + + +  (25) 

where 1bendingU and 1in pnelU − , respectively, are the total bending potential energy including the total 
potential energy stored in the elastic springs at edges of the plate 1 and the total in-plate potential 
energy of the plate 1, the subscript 2 represents plate 2, couplingU  is the total coupling potential energy 
of the coupled T-shape plate system.  

The total potential energy and kinetic energy of the elastic plate 1 are, respectively, expressed as 
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where 2

1 1 1 1/ (1 )G E h µ= × −  is the tension stiffness of plate 1,the total potential energy and kinetic 
energy of the elastic plate 2 or plate 3 can be obtained by substituting subscript 1 with subscript 2 or 
subscript 3 in the above equations. Because the functions: 1

c
couplingU  , 2

c
couplingU  , 1

g
couplingU  and 

2
g

couplingU  resemble the function couplingU , the description of couplingU  will be given in this paper as:  
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where cK is the rotational coupling stiffness at coupling conjunction, 1ck , 2ck  and 3ck are the 
linear coupling stiffnesses at coupling conjunction in 1z − direction, 1x − direction and 1y − direction, 
respectively. 1Lx c  is the coupling conjunction of plate 1.  

By substituting Eqs.(12)-(14) into Eq. (19) and then applying Rayleigh-Ritz procedure to solve, 
the linear algebraic equations about the unknown coefficients for coupled T-shape plates structure, 
cross shape plates structure and the panel-linked double-panel structure can be obtained, respectively.  

2 2 20, 0,ω ω ω     − = − = − =     t t t c c c g g g gK M E K M E K M E F  (31) 

1 1 1 2 2 2 =  
TT T T T T T

tE W U V W U V  (32) 

1 1 1 2 2 2 3 3 3 =  
TT T T T T T T T T

cE W U V W U V W U V  (33) 

1 1 1 2 2 2 3 3 3 =  
TT T T T T T T T T

gE W U V W U V W U V  (34) 

{ }T

100 1 10 1 , 10 1 , 10 1 , 10 1 ,... , ... ........, ,......... ... ....... ,.......... ,M N M M N NA A a a d d e e h h=1W
 

(35) 

{ }100 1 1 0 1 , 1 0 1 , 1 0 1 , 1 0 1 ,...... , ..., ..., ..., ...,M N in inM in inM in inN in inNB B a a b b c c d d=
T

1U  (36) 

{ }100 1 1 0 1 , 1 0 1 , 1 0 1 , 1 0 1 ,......, , ..., ..., ..., ...,M N in inM in inM in inN in inNB B a a b b c c d d=
T

1V  (37) 

where K and M , respectively, are stiffness and mass matrices of the coupled plates structure, the 
natural frequencies and eigenvectors of coupled T-shape plates structure, cross shape plates structure 
or the panel-linked double-panel structure can be obtained by solving Eq. (31). If the eigenvectors 
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are calculated, the dynamic response on the coupled plates can be determined by Eqs.(12) - 
(14). 

3. NUMERICAL RESULTS AND DISCUSSIONS 

3.1 Numerical results and discussions of coupled plates 
3.1.1 Validation 

In this section, the material parameters and dimensional parameters of the plates belonged the 
coupled plates structure are identical: 71 GPa ,E = 0.3 ,µ = 32700 Kg/m ,ρ = the thickness 

0.002mh = and 1 m 1 m.Lx Ly× = × Coupling conditions are: cK = ∞ , 1ck = ∞ , 2ck = ∞ and 3ck = ∞  
Boundary conditions of plates are clamped-supported. Table 3.1 shows the first six natural 
frequencies of the coupled plates structure.  

Table 3.1 – Natural frequencies (Hz) for the coupled coupled plates structure system                    

Coupled  

types 

Mode 

number 

M×N 
FEA 

4×4 5×5 6×6 7×7 8×8 9×9 

T-shape 

plates 

structure 

1 17.284 17.227 17.225 17.193 17.193 17.173 17.085 

2 33.095 33.036 33.019 33.000 32.998 32.983 32.915 

3 36.012 35.960 35.960 35.923 35.935 35.920 35.842 

4 42.630 42.228 42.211 42.007 41.989 41.888 41.389 

5 49.264 49.264 48.844 48.850 48.709 48.707 48.528 

6 51.449 51.092 51.091 51.028 51.044 51.026 50.938 

         

cross shape 

plates 

structure 

1 16.983 16.910 16.908 16.869 16.869 16.844 16.743 

2 17.777 17.777 17.775 17.775 17.775 17.775 17.770 

3 32.515 32.462 32.448 32.428 32.426 32.413 32.348 

4 35.856 35.787 35.787 35.756 35.756 35.737 35.650 

5 36.256 36.255 36.254 36.253 36.253 36.253 36.237 

6 36.257 36.256 36.255 36.253 36.254 36.254 36.238 

         

panel-linked 

double-panel 

structure 

1 16.844 16.741 16.738 16.682 16.682 16.646 16.699 

2 31.208 31.077 31.061 31.003 31.000 30.963 31.079 

3 35.785 35.690 35.690 35.645 35.645 35.616 35.965 

4 39.391 39.226 39.193 39.120 39.114 39.080 39.014 

5 44.571 43.889 43.874 43.537 43.534 43.344 42.765 

6 49.262 49.262 48.844 48.844 48.704 48.713 48.526 

In this paper, it is noted that the stiffness of springs varies from extremely large (5× 1011) to extremely 

small (0), In the finite element program ANSYS, the coupling systems are meshed by SHELL63 

elements ,whose size is 0.02. Figs. 3.1, 3.2 and 3.3, respectively, show some comparisons of the mode 

shapes for coupled T-shape plates structure, cross shape plates structure and the panel-linked double-panel 

structure. The corresponding mode shapes obtained from the current method agree well with that obtained 

from ANSYS.  
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(a)                                   (b) 

  
(c)                                    (d) 

Fig. 3.1 –Mode shapes for the coupled T-shape plates structure system  

   
(a)                                     (b) 

   
(c)                                   (d)  

Fig. 3.2 –Mode shapes for the coupled cross shape plates  

 
(a)                                    (b) 

 
(c)                                    (d) 

Fig. 3.3 –Mode shapes for the panel-linked double-panel structure 
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3.1.2 The effect of dimensional parameters of the coupled plates structure  
The structural parameters play a crucial role in the vibration behavior of coupled plates structure 

system. The effect of some dimensional parameters on the natural frequencies for the panel-linked 
double-panel structure would be discussed in this section. Boundary conditions ,coupling conditions 
and material parameters are the same as ones described in the subsection 3.1.1. Table 3.2 and Table 3.3 
show the natural frequencies for the panel-linked double-panel structures with different dimensions
( 1 0.002m,h = 2 0.002m,h = 3 0.002m,h = 1 1 1 m 1 m,Lx Ly× = × 2 2 1 m 1 m,Lx Ly× = × 3 1 mLy = , 

various )3Lx  and different thickness ( 1 0.002m,h = 2 0.002m,h = various 3 ,h 1 1 1 m 1 m,Lx Ly× = ×

2 2 1 m 1 mLx Ly× = ×  and )3 3 1 m 1 mLx Ly× = × , respectively. The truncation numbers are set as 
M=N=9. 

Table 3.2 –Natural frequencies (Hz) for the panel-linked double-panel structure with various  

3Lx (m).  

Table 3.3 –Natural frequencies (Hz) for the panel-linked double-panel structure with various  
various 3 ,h    

From Table 3.2 and Table 3.3, it is seen that the natural frequencies for the panel-linked 
double-panel structure decrease as 3Lx  increases except for the third and four modes whose natural 
frequencies almost remain unchanged. The natural frequencies for the panel-linked double-panel 
structure increase as

3h increases. 

Lx3 
Mode number 

1 2 3 4 5 6 7 

0.05 44.870  48.413  48.713  49.041  59.704  63.005  63.096  

0.10 42.035  46.566  48.608  48.712  57.595  61.107  63.062  

0.15 40.600  44.880  48.652  48.712  56.642  59.747  63.076  

0.20 39.677  43.669  48.671  48.712  56.071  58.832  63.081  

0.25 38.949  42.754  48.681  48.711  55.629  58.178  63.084  

0.30 38.252  42.032  48.687  48.711  55.194  57.684  63.086  

0.35 37.466  41.437  48.691  48.711  54.675  57.293  63.088  

0.40 36.460  40.926  48.694  48.711  53.956  56.967  63.088  

0.45 35.073  40.467  48.696  48.710  52.856  56.577  56.681  

0.50 33.167  40.036  48.697  48.710  50.439  51.144  56.416  

3h  
Mode number 

1 2 3 4 5 6 7 

0.0005 4.438 9.045 9.062 13.343 16.215 16.309 20.357 

0.0010 8.799 17.799 18.084 26.553 31.236 32.557 36.677 

0.0015 12.915 25.421 26.976 36.576 38.987 39.091 48.701 

0.0020 16.646 30.963 35.616 39.079 43.344 48.704 48.708 

0.0025 20.020 34.961 41.927 43.907 48.706 48.709 48.715 

0.0030 23.196 38.434 44.741 48.707 48.710 51.694 53.766 

0.0035 26.317 41.618 47.139 48.708 48.710 58.168 58.320 

0.0040 29.453 44.374 48.708 48.710 49.004 61.743 62.587 

0.0045 32.622 46.570 48.709 48.711 50.405 63.094 63.094 

0.0050 35.808 48.209 48.709 48.711 51.469 63.094 63.094 
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3.1.3 The effect of coupling conditions of the coupled plates structure  
As an important factor of the coupled plates structure system, the effect of coupling conditions 

should be discussed. Some cases for the panel-linked double-panel structure with varied coupling 
conditions would be discussed to demonstrate the effect of the coupling conditions. The geometries , 
material parameters and boundary conditions are the same as the ones described in the subsection 
3.1.1. Table 3.4 shows the natural frequencies for the panel-linked double-panel structure with 
different values of coupling springs ( 1ck = ∞ , 2ck = ∞ , 3ck = ∞ ,various ,cK ; the coupling springs: 

,cK = ∞  various 1ck , 2ck = ∞ , 3ck = ∞ ; the coupling springs: ,cK = ∞  1ck = ∞ , various 2ck , 

3ck = ∞  and the coupling springs: ,cK = ∞  1ck = ∞ , 2ck = ∞ , various )3ck . The truncation 
numbers are M=N=9. 

Table 3.4 –Natural frequencies (Hz) for the panel-linked double-panel structure with one pair of 

stiffness-variable coupling springs as the stiffness values of the others are extremely large (5× 1011 ) 

Variable 

Stiffness 
Value 

Mode number 

1 2 3 4 5 6 7 8 

cK  

102 14.809  28.098  34.471  36.902  37.029  47.363  48.710  48.718  
103 16.027  30.223  35.157  38.403  40.451  48.713  48.713  48.892  
104 16.565  30.879  35.550  38.995  42.918  48.713  48.713  49.445  
105 16.637  30.954  35.609  39.071  43.300  48.713  48.713  49.513  
106 16.645  30.962  35.616  39.079  43.340  48.713  48.713  49.521  
107 16.646  30.963  35.616  39.080  43.344  48.713  48.713  49.521  

          

1ck  

102 16.646  17.808  17.808  30.963  35.616  36.269  36.269  39.080  
103 16.646  18.097  18.097  30.963  35.616  36.406  36.406  39.080  
104 16.646  20.694  20.694  30.963  35.616  37.718  37.718  39.080  
105 16.646  30.963  34.123  34.123  35.616  39.079  43.344  46.783  
106 16.646  30.963  35.616  39.079  43.344  46.788  46.788  49.521  
107 16.646  30.963  35.616  39.080  43.344  48.521  48.521  49.521  

          

2ck  

102 11.082  14.144  25.536  30.441  34.071  36.873  39.119  45.673  
103 11.450  14.766  25.926  30.585  34.336  36.948  39.120  45.883  
104 13.633  19.345  29.800  31.731  36.678  37.698  39.134  48.001  
105 16.118  28.752  34.561  39.055  41.536  45.592  48.713  48.713  
106 16.587  30.749  35.490  39.078  43.152  48.713  48.713  49.130  
107 16.639  30.941  35.603  39.079  43.325  48.713  48.713  49.482  

          
It can be seen that the stiffness of coupling springs 3ck have very little impact on the natural 

frequencies for the panel-linked double-panel structure. 2ck and 3ck have lager influence on the 
natural frequencies than other stiffness of coupling springs for the panel-linked double-panel 
structure. 

4. CONCLUSIONS  
In this paper, the modified Fourier series method is applied to the modeling and the analysis of 

coupled plates of various types, which includes T-shape plates, cross shape plates and a panel-linked 
double-panel structure. The boundary conditions and coupling conditions are simulated by a set of 
elastic springs of arbitrary stiffness. All the displacements are expressed by the superposition of a 
two-dimensional Fourier series and several supplementary functions. Because related derivative of the 
displacement functions are smooth and continuous in the whole solving domain, the coefficients can 
be solved by using the Rayleigh-Ritz procedure based on energy principle. The reliability and 
accuracy of current method are verified by comparing the natural frequencies and mode shapes with 
ANSYS program. Some numerical examples are also conducted in order to illustrate the effect of 
geometry parameters and coupling conditions on the natural behavior of coupled plates. And the 
results show that: (a) The natural frequencies for coupled plates increase as the thickness of plate 
increases; (b) The natural frequencies decrease as the length of plate increases; (c) The natural 
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frequencies are sensitive to the coupling boundaries: 1ck and 2ck . 
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