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ABSTRACT
Generally, the implementation of fully coupled multichannel active noise control system which has 
advantages in improving noise reduction and extending quiet zone requires considerable processing power. 
A practical method to decrease processing power is to decentralize the control; that is, implement many 
single input, single output independent controllers operating simultaneously instead of a large multiple 
input, multiple output system. However, the drawback of decentralized control is the risk of global 
instability. A new method was proposed for constructing an active noise control system to balance the 
complexity in multichannel systems and instability in the decentralized system. The proposed method 
consists of several independent multichannel sub-systems called cluster active control system, which is a 
modified version of the decentralized system and can improve stability at a reasonable computational cost. 
The purpose of this paper is to derive conditions under which globally stable control system behavior can 
be obtained in the case of cluster control for a sinusoidal disturbance. Hence, theoretical analysis and 
simulations are carried out to achieve the main objective which is to give practical conditions derived from 
the zero-pole map of the control system. These conditions only take into account the geometrical 
arrangement of the secondary sources and error sensors. 
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1. INTRODUCTION

Figure 1 – Diagram of cluster active control system
Generally, multichannel active noise control system uses signals from all error sensors and the 

secondary path transfer functions between all secondary sources and all error sensors are required to 
adjust the output of each secondary source, which is called fully coupled control system or 
centralized control system (1). Such multichannel system has been extensively used to improve 

1 yuhaoxin0613@foxmail.com
2 kachen@nwpu.edu.cn
3 daihai2008@qq.com



Page 2 of 9 Inter-noise 2014

Page 2 of 9 Inter-noise 2014

noise reduction and extend quiet zone (2,3). However, when the number of secondary sources and 
error sensors becomes large, the complexity of centralized controllers makes the implementation of 
such a control strategy difficult or expensive. To reduce the complexity, the decentralized strategy 
has been used recently, where each independent single channel controller is designed based on its 
own secondary path and the error sensor (4) but not take into account the acoustic coupling from 
other secondary sources, so it has benefits of simple design and flexible hardware. However, there 
might be a performance loss and instability due to neglect the interactions for the acoustic coupling.

Recently, in order to alleviate the contradiction between the complexity and instability, a new 
strategy called cluster system whose structure is in between centralized and decentralized is 
proposed, shown as Figure 1. A cluster system is also centralized system which contains a subset of 
secondary sources and error sensors. In this study, stability of the cluster system aimed at tonal 
noise in free space is investigated by analyzing the equivalent transfer function to get the principle 
of geometrical arrangement of the secondary sources and error sensors.

2. THEORY

2.1 Algorithm Implement 
For the simplification of the problem, consider a cluster active control system which has I sub-

systems. The number of error sensors and secondary loudspeakers of each individual subsystem is N. 
The system is implemented by FxLMS algorithm. Obviously, such a cluster system can be 
degenerated into the decentralized system when N is equal to one. In order to keep the analysis 
relatively straightforward, we will assume that the primary disturbances of each error sensors are 
sinusoidal which is related to a single reference signal by a primary plant model and that all 
subsystems use the same reference signal, shown as Equation (1), where   is digital frequency, n is 
sampling index.

cosx n (1)
The number of sensors and loudspeakers of entire system is NI, the secondary path response from 

the jth loudspeaker to the kth sensor shown as Equation (2).

,
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So that the relevant filtered-x signal shown as Equation (3) is given by
, , ,( ) cos( )j k j k j kr n A n   (3)

Assuming each subsystem implements simultaneously with same adaptive step which is small 
enough and the length of adaptive filter is L. The error equation and update equation can be written 
as follow
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ˆ( 1) ( ) 2 ( ) ( )n n n n  w w R e (5)

where e(n) is the error vector, d(n) is the primary sound vector and μ is an adaptive step. R(n) and 
ˆ ( )nR  are the filtered-x signal matrixes shown as follow, they are both block matrixes and ˆ ( )nR  is a 

diagonal block matrix.
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, ( )p q nR  in Equation (6) and Equation (7) represents that the filtered-x signals in the matrix are 
relevant about the path from the loudspeakers of the pth subsystem to the sensors of the qth 
subsystem, show as Equation (8).
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 w(n) is the vector of adaptive filter coefficients given by
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where , ( )j lw n  in Equation (12) is the lth coefficient of the adaptive filter connect to the jth 

loudspeakers. ( 1) , ( )p N j lw n   represent the lth coefficient of the jth filter in the pth subsystem. Thus 

the update equation of ( 1) , ( )p N j lw n   can be written as Equation (13) according to Equation (5).
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2.2 Equivalent Transfer Function
The Z-transform of Equation (4) is shown as
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In this equation, the superscript H represenst Hermitian conjugate and S is the secondary path 
response matrix given by
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where S(p,q) represents the response matrix from the loudspeakers in the pth subsystem to the 
sensors in the qth subsystem. 

In Equation (14), ( )l zW  is shown as Equation (17) where , ( )j lW z  is the Z-transform of , ( )j lw n , 

( )l zW  can be derived from the Z-transform of Equation (13), shown as Equation (18).
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In Equation (15), Ŝ  is another version response matrix of the  secondary path which only 
contains the path of each subsystem itself but ignores the influence of the other subsystem, i.e.
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Combining Equation (14) with Equation (18), we get the Z domain formula of entire systemas 
follows
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The summation parts of Equation (21), shown as Equation (22), contains the factor 2( )ie zE  
make the system transfer function unobtainable directly. So we further assume that the reference 
signal is synchronously sampled and L sample points just samples several integral periods of the 
reference signal (5). Under this premise, Lω equals to the integral multiples of π, thus Equation (22) 
equal to zero.
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We eliminate 2( )ie zE  from Equation (21), the system can be rewritten as follows
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where β is named normalized adaptive step. Substituting Equation (19) into Equation (23), the 
equivalent transfer function can be obtained as follows
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where the symbol Ŝ  represents the conjugation of Ŝ , superscript T represent transposition, I is 
identity matrix. H(z) is the transfer function matrix with size of NI×NI, shows that the each 
individual error signal is relevant to all primary signals because of the interactions of other 
loudspeakers.

In addition, notice that Equation (25) represents a multi-channel feedback system, the open-loop 
transfer function matrix is G(z) and the feedback gain is β.

3. Simulation of Simple Physical Condition

3.1 Single Small Subsystem
In this section, we consider a simple physical condition of a cluster active control system, 

operating in free space, to obtain the principle of system geometrical layout. Firstly, we begin with 
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one small subsystem with two loudspeakers and two sensors which is a centralized system exactly. 
The positions of the loudspeakers and sensors are shown as Figure 2. The loudspeakers and sensors 
are placed in the corner of a square with its size of 1. Notice that the size of 1 is normalized length.

Figure 2 – Two-channel small subsystem of cluster active control system
If we further assume that the loudspeakers and sensors both have the electronic response of 1 

normalized unit. Thus we obtained the secondary path response matrix in free space
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where k is the acoustic wavenumber, equal to the angular frequency divided by the sound speed, and 
should not be confused with the iteration number.
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Figure 3 – Zero point locus of single subsystem
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Figure 4 – Root locus of single subsystem
In this case, H(z) is 2×2 and contains four transfer functions. The zero point locus of H(z) with β 
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changing from 0 to 0.1 is shown as Figure 3. In this figure, the blue circles are the zero points with 
β=0, red crosses are the zero points with β=0.1. Notice that there are two conjugate zero points 
locate on the unit circle invariably although β is changed, and the angle of the invariable locations is 
just the digital frequency ω. It is shown that the steady-state error of the system is zero if system is 
stable.

The root locus of H(z) with β changing from 0 to 0.1 is shown as Figure 4. We can see that when 
β>0, the pole points are located within the unit circle, so that the β>0 which can makes the system 
stable is existent. The root locus can verify whether the system is stable intuitively.

3.2 The Cluster System with Two Subsystems

Figure 5 – Symmetrical placement of the cluster system
We can assume that the cluster system is constructed by two subsystems both of which are the 

same with the mentioned one above. The system placement is shown as Figure 5. Two same 
subsystems are placed “face to face” symmetrically, and the distance between two subsystems is d1. 

Table 1 – Stability of the system with different d1
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Figure 6 – The learning curves with different d1

The stability of the system with different d1 is shown as Table 1. Figure 6 shows the learning 
curves of the system when d1 is -0.1, 0, 0.1 and 1, respectively. We can see that when the two 
subsystems overlap with each other, taking d1=-0.1 as example, the cluster system becomes unstable. 
The root locus of H(z) under this situation is shown as Figure 7. The figure shows that there are one 
locus locating outside of the unit circle, which leading to the unstability.

When d1=0, the system reaches critical stable state, that is the relative distance of the error 
sensors of the subsystems can be ignored considering the wavelength at low frequency. Under this 
situation, the magnitude response at ω of H(z) is shown as Equation (27). There are two transfer 
functions obtaining -6dB response at each row, which means that the magnitude of each error is one, 
so the system is critical stable. The same result can be represented by the root locus, shown as 
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Figure 8.
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Figure 7 The root locus when d1=-0.1
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Figure 8 –The root locus when d1=0
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Figure 9 – The root locus when d1>0



Page 8 of 9 Inter-noise 2014

Page 8 of 9 Inter-noise 2014

When d1>0, the root locus is within the unit circle when β is changed from 0 to 0.1, whether d1 is 
0.1 or 1. It reveals that the system reaches stable state, shown as Figure 9. The locus which is shown 
as Figure 9(a), is much closer to unit circle than the locus shown as Figure 9(b). This explains why 
the convergence rate with d1=1 is much faster than d1=1.

The influence of d1 on convergence rate is studied by comparing with the learning curves in 
different d1, shown as Figure 10. Combining Figure 6, we can see that the convergence rate is 
increased when d1 is increased from 0. The increment of convergence rate is getting smaller and 
smaller when d1 is increased unceasingly. Particularly, after d1 is larger than 0.5, the increment of 
convergence rate can be ignored. When d1 is very large (e.g. 10000), the zero point locus and root 
locus of the whole system are exactly the same with the single subsystem which mentioned in 
Section 3.1. Namely, the interaction between two subsystems is so weak that can be completely 
ignored. That is, the two subsystems run independently.
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Figure 10 – The learning curves with increasing d1

4. Conclusions
In this study, the equivalent transfer function of the cluster active noise control system for 

sinusoidal signals is deduced from the Z-transform of the active control algorithm. The stability and 
steady-state error of the system are obtained by analyzing the zero-pole map of the equivalent 
transfer function. 

Considering the simplest situation, we assume that the cluster system is made up of two small 
subsystems. The subsystems are placed “face to face” with distance d1 in a free space. The 
simulation results show that when two subsystems overlap with each other, i.e. d1<0, the system 
become unstable because of the root locus is located outside the unit circle. If the difference of the 
error signal between two subsystems can be ignored at low frequency, i.e. d1<0, the system reaches 
critical stable state. The magnitude response of the equivalent transfer function explains the reason. 
In this condition, the system is ineffective. 

The effectively arrangement requires that the two subsystems are departed with distance which is 
larger than 0.5. If the distance is smaller than 0.5, the system is stable and the interactions between 
subsystems will lead to a slow convergence rate. However, if the distance is larger than 0.5, the 
system can achieve the fastest convergence rate and must be stable.
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