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ABSTRACT

In many multichannel active noise and vibration control systems the controller is adapted to minimize the

2-norm of the error signals. This may, however, lead to a large spatial variance in the residual error. A method

of achieving a more uniformly controlled error field using a weighted squared error strategy has previously

been proposed, although the presented method of defining the error weighting parameters results in a very

slow convergence rate. This convergence rate limitation has been overcome by the minimax algorithm which

minimizes, in a least-squares sense, the maximum error signal at each iteration. However, due to the inherent

switching in this algorithm, for fast convergence speeds it suffers from significant misadjustment and in a

tonal control problem this introduces additional unwanted spectral components. In this paper an alternative

method of minimizing the maximum error signal is proposed which uses an adaptive error-weighting matrix

that is bounded and so avoids the slow convergence speeds previously reported. It is also shown that the pro-

posed algorithm does not suffer from the same misadjustement problems shown by the minimax algorithm.

The details of the proposed method are first outlined and then its performance is compared to the previously

proposed methods through a series of time-domain simulations employing measurements of a physical sys-

tem.
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1. INTRODUCTION

Active noise and vibration control has been employed in a wide variety of noise control problems where

weight restrictions and performance requirements mean that passive control solutions are not practical or

sufficient. For example, active noise control has typically been applied in road vehicles for engine (1) and

road noise control (2), in aircrafts to control propeller-induced cabin noise (3), in headphones to control

exterior noise (4) and to control vibration in a wide variety of structures and for vibration isolation (5, 6).

However, active control also benefits from the ability to manipulate the sound field, the radiated sound or the

structural response with a greater degree of flexibility than passive control techniques. For example, more

recent attention has been focused on the active control of sound quality (7, 8), which attempts to achieve a

specific level after control rather than necessarily achieving the maximum attenuation of the error signals. In

a similar vein, attention has also been given to the spatial properties of active control systems and this is the

focus of this paper.

In multivariable active control applications the sum of the squared error signals, or the 2-norm of the error

signal vector is generally minimised (9). However, this can result in a sound field or a vibration distribution

that has large differences between its maximum and minimum values. To overcome this problem it is nec-

essary to minimise the infinity-norm of the error signal vector. To achieve a more spatially uniform error,

Elliott et al (9) propose the use of a weighted squared error strategy. However, when the proposed weighting

strategy is used to minimise the infinity-norm it is susceptible to very slow convergence speeds. This prob-

lem is overcome by Gonzalez et al (10) through the derivation of the minimax algorithm, which minimises

the maximum error signal at each iteration of the algorithm. However, the minimax algorithm suffers from

misadjustment, or chattering at high convergence gains and this may limit the use of the minimax algorithm

when fast convergence is critical.
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In this paper, the multivariable tonal control problem is first outlined and the general least-squares steep-

est descent algorithm is defined. The minimax control problem is introduced and the minimax algorithm

proposed by Gonzalez et al (10) is summarised. It is then shown that the minimax algorithm can also be

formulated in terms of the generalised cost function and the corresponding generalised update algorithm

with a switching error signal weighting matrix. An alternative method of adapting the error signal weighting

matrix to achieve the minimax criterion is then described, which avoids the switching properties of the min-

imax algorithm. The performance of the proposed algorithm is then compared with the conventional least

squares algorithm and the minimax algorithm proposed in (10) through simulations using measured transfer

responses. Finally, conclusions regarding the proposed algorithm are presented.

2. MULTICHANNEL TONAL CONTROL PROBLEM

The response of the multichannel feedforward control system shown in Figure 1 at a single frequency is

given by

e(e jω0Ts) = d(e jω0Ts)+G(e jω0Ts)u(e jω0Ts), (1)

where e is the (L× 1) vector of error signals, d is the (L× 1) vector of disturbance signals, G is the (L×M)
matrix of plant responses and u is the (M × 1) vector of control signals. For the remainder of this paper the

dependence on ω0Ts will be dropped for conciseness. The optimal vector of control signals for this multi-

channel problem is dependent on the cost function to be minimised. In many applications the cost function is

defined as the sum of the squared error signals, which is given by

J = eHe. (2)

When the number of error sensors is greater than the number of control actuators, i.e. L>M, then the problem

is overdetermined and the optimal set of control signals is given by the closed-form solution

uopt =−
(

GHG
)−1

GHd. (3)

A more general cost function is given by the weighted sum of the squared error and control signals

J = eHQe+uHRu (4)

where Q and R are (L×L) and (M×M) weighting matrices for the error and control signals respectively. In

this more general case the optimal set of control signals is given by

uopt =−
(

GHQG+R
)−1

GHQd. (5)

The error and control weighting matrices can be selected in this case to achieve different requirements. For

example, the error sensor weighting matrix could be selected in order to weight the relative importance of

minimising the error signal at different error sensors and the control signal weighting matrix could be defined

in order to avoid over driving the control actuators.

G(ejω0T) Σ

u(ejω0T )

d(e jω0T)

e(e jω0T)

M

Control

Signals

L×M

Plant

Responses

L

Disturbance and

error signals

Figure 1 – Block diagram of a multichannel tonal control system operating at a frequency of ω0.

In many practical active control systems, a fixed control filter is not suitable due to changes in the dis-

turbance signal and the plant response over time. The generalised cost function given by equation 4 can be

minimised in practice by iteratively adjusting the control signal vector. Using a gradient-descent approach the

control signal update equation is given by

u(n+1) = (I−αR)u(n)−αCQe(n) (6)
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where n is the iteration index, α is the convergence gain, I is the identity matrix and C is a complex matrix

update operator, which for the steepest-descent algorithm is equal to GH . The update algorithm given by

equation 6 is derived by assuming that the error signals have reached their steady state values before the

subsequent iteration. In practice this means that the algorithm will be very slow to converge and, therefore,

it is common practice to compute the next iteration prior to the steady state condition (11). The algorithms

considered in this paper are thus all updated at the sampling frequency, 1/Ts Hz, and may therefore be referred

to as Instantaneous Harmonic Control (IHC) algorithms.

3. MINIMISATION OF THE MAXIMUM ERROR SIGNAL

As highlighted in the introduction, one particular criterion that is of interest in active noise and vibration

control is the minimisation of the maximum error signal. This infinity norm criterion provides a more spatially

uniform residual error and this is of particular interest in a number of applications. Although there is no closed-

form solution to this infinity norm problem, an iterative solution has been proposed by Gonzalez et al (10).

The infinity norm cost function is given by

J∞ = ||e||∞ = max
1≤l≤L

|el|= |emax|, (7)

where emax is the error signal with the largest magnitude. It is shown by Gonzalez et al (10) that this cost

function is convex and, therefore, a steepest-descent type algorithm can be used successfully to iteratively

update the control signals. The gradient of the cost function given by equation 7 is (10)

∆∆∆∞ = (|emax|)
−1gH

maxemax (8)

where gmax is the row of the plant response matrix, G, corresponding to the error signal with the maximum

magnitude. Following the method of steepest-descent the iterative algorithm that minimises the maximum

error signal is given by

u(n+1) = u(n)−µ∆∆∆∞ = u(n)−αgH
maxemax(n) (9)

where emax(n) is the error signal with the largest magnitude at each iteration. This iterative algorithm is called

the minimax algorithm in (10) and this naming convention will be employed here.

3.1 Switched Error Signal Weighting Matrix

The minimisation of the maximum error signal has been achieved iteratively by Gonzalez et al (10) as

outlined by equation 9. At each iteration this algorithm updates the control signals using only the maximum

error signal at each iteration according to the steepest-descent method. This operation can also be achieved

using the generalised gradient-descent algorithm given by equation 6 by setting R = 0, C = GH and employ-

ing a time-varying sensor weighting matrix which selects the maximum error signal and the corresponding

row of the plant response matrix at each iteration. The time varying sensor weighting matrix at each iteration

is defined by setting the diagonal element of Q(n) corresponding to the maximum error signal to unity and

all other elements to zero. That is

Ql(n) = 1 if |el(n)|= max(|e(n)|),

Ql(n) = 0 if |el(n)| 6= max(|e(n)|), (10)

where Ql is the l-th diagonal element of the Q matrix. It is important to highlight that this sensor weighting

matrix is equivalent to a logic-based switching strategy that switches between L adaptive controllers, each

of which adapt to minimise one of the L individual error signals. The control signal update equation which

describes the full controller can thus be expressed as

u(n+1) = u(n)−αGHQ(n)e(n) (11)

and this behaves identically to the minimax algorithm given by equation 9, however, it does not benefit from

the reduced computational demands discussed by Gonzalez et al (10).

The stability of the minimax controller has been analysed in (10) and the condition for convergence has

been given as

0 < α ≤
1

max(glg
H
l )

, (12)

where gl is the l-th row of the full plant response matrix, G, and max(glg
H
l ) is the maximum of the inner

product of each of the L rows of the plant matrix. The derivation of equation 12 is based on the steady-state
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assumption that any transients in the error signals have decayed away before they are measured, however,

when an iterative algorithm is updated at the sample rate the time between each iteration will typically be

small compared to the transient response of the system under control and, therefore, equation 12 will give

an excessively high maximum convergence gain. Additionally, the stability analysis in (10) also assumes that

the error signal with the largest power does not change during the convergence, which will in general not be

true.

In the context of the filtered-x LMS algorithm the stability of the controller has typically been determined

following similar steady-state assumptions to the analysis of the minimax algorithm in (10), however, a more

thorough analysis which does not require these assumptions has been performed by representing the filtered-x

LMS algorithm as an equivalent feedback compensator (9, 11, 12). This allows the performance and stability

of the controller to be assessed using well known control theory. However, in the context of the minimax

algorithm it is not straightforward to perform such analysis due to the switching nature of the controller and

instead it is necessary to analyse the stability using Lyapunov stability theory, for example (13). This analysis

is beyond the scope of the present paper and, although it will form the basis of future work, it is shown in the

results presented in Section 4 that the minimax controller is generally limited by it performance rather than

its stability.

3.2 Adaptive Error Signal Weighting Matrix

An alternative method of attempting to minimise the maximum error signal based on minimising a

weighted squared error is suggested by Elliott et al (9). The proposed method sets the error weighting terms,

corresponding to the diagonal elements of the Q(n) matrix in equation 11, to the associated averaged squared

error term. The averaged squared error for the l-th error signal is approximated using a moving average such

that the l-th diagonal element of the error weighting matrix is calculated as

Ql(n) =

[

e2
l (n)+ e2

l (n−1)
]

2
. (13)

Using this method the Q(n) matrix acts as a time varying error weighting function, opposed to its switching

function operation in the minimax algorithm. It turns out, however, that this weighted error algorithm does not

minimise the maximum error signal, but instead minimises the 4-norm of the error. Although this produces

less variation in the residual error signals than the least squares solution, it does not give the same results as

the minimax algorithm. It is highlighted in (9) that the p-norm can be minimised by setting Ql to the average

value of e
(p−2)
l

and, therefore, the minimax solution can be approximated by setting p to a large number.

However, in this case it can be appreciated that Ql can take on a very large range of values and, therefore, in

practice the algorithm can be very slow to converge.

The slow convergence problems associated with the weighted error algorithm proposed in (9) can be

avoided by defining the diagonal elements of the sensor weighting matrix as

Ql(n) =

(

|el(n)|

|emax(n)|

)p

(14)

where |el(n)| is the magnitude of the l-th error signal at the n-th iteration and p must be large to approximate

the infinity-norm optimisation. This method of defining the sensor weightings means that Ql(n) is bounded

as

0 < Ql(n)≤ 1, ∀ l (15)

and, therefore, it is expected that the convergence of the algorithm will not be as significantly affected by the

adaptation of the error signal weighting matrix as when the diagonal elements of the sensor weighting matrix,

Ql , are positive but unbounded as reported in (9).

To give some insight into the effect that the adaptive Q matrix has on the convergence of the algorithm,

the convergence of the control signals will initially be considered following the approach applied in (14)

for example. Using equations 1 and 5, with R = 0, the difference between the control signal vector at each

iteration, give by equation 11, and the optimal control signal can be expressed as

u(n+1)−uopt =
[

I−αGHQG
]

(u(n)−uopt) . (16)

If it is assumed that u(0) = 0 and equation 16 is applied recursively then

u(n)−uopt =−
[

I−αGHQG
]n

uopt . (17)
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Using singular value decomposition of the plant response matrix, the Hessian matrix can be expressed as

GHQG = VΣΣΣVH (18)

where V is a unitary matrix of complex normalised eigenvectors and ΣΣΣ is a square diagonal matrix of eigen-

values. Using the normalised eigenvectors, a normalised control vector can be defined as

v(n) = VH(u(n)−uopt) (19)

and using equations 17 and 18 this can then be written as

v(n) = [I−αΣΣΣ]n vopt . (20)

Since ΣΣΣ is a diagonal matrix, each component of the normalised control vector is independent and can be

written as

vm(n) = [1−αλm]
n

vm:opt . (21)

This leads to the standard convergence condition given by

0 < α <
2

λm

∀ m (22)

and the convergence coefficient is thus limited by the maximum eigenvalue of the Hessian matrix according

to

0 < α <
2

λmax

. (23)

For αλm ≪ 1 equation 21 can be written as

vm(n) = e−αλmnvm:opt , (24)

which shows that the algorithm converges in a series of modes with time constants determined by 1/(αλm).
The slowest mode thus corresponds to the smallest eigenvalue of GHQG and since rapid convergence is given

by setting α = 1/λmax the minimum time constant for the slowest mode is λmax/λmin, or the eigenvalue spread.

Although this derivation makes the same steady-state assumptions outlined in the previous section with regard

to equation 12 and, therefore, may over predict the maximum convergence gain when the algorithm is updated

at the sample rate, it does provide some insight into the expected behaviour of the algorithm.

For the case of a time varying error weighting matrix, Q(n), it can be appreciated from equations 23 and 24

that both the maximum convergence gain and the modes of convergence will be affected by the change in the

Q matrix with time, since this directly affects the eigenvalues of the Hessian matrix, GHQ(n)G. For example,

if the adaptation of Q means that λmax increases, then the maximum convergence gain will be reduced. If the

adaptation of Q also means that the eigenvalue value spread is increased, then the speed of convergence will

be reduced. This would therefore suggest that it may be necessary to adapt the convergence gain whilst also

adapting the error weighting matrix in order to achieve maximum performance. However, since Q is diagonal

and its elements are bounded between 0 and 1, this effect may be small and this will be considered in the

simulations presented in the following section.

4. SIMULATIONS

To assess the performance of the minimax and adaptive error signal weighting algorithms presented in the

previous section, a series of time-domain simulations have been conducted using a set of transfer responses

measured between four control loudspeakers, a single primary loudspeaker and eight microphones in a rect-

angular enclosure with dimensions of 2.4 × 1.2 × 1.1 m. The physical plant responses and the primary path

responses have been modelled using finite impulse response filters and the primary disturbance pressures have

been produced by a single tone at 250 Hz. The nominal plant response model used in the update algorithms

has thus been calculated at the control frequency of 250 Hz.

The performance of the steepest-descent least squares, minimax and adaptive error signal weighting algo-

rithms are shown in Figure 2. The convergence gain, α , for each algorithm has been set to achieve a similar

initial convergence speed. It is not possible to achieve identical convergence speeds for the three algorithms

due to the differences in their convergence properties, as discussed in the previous sections. Figure 2a shows

the convergence of the sum of the squared error signals for the three algorithms. From this plot it is clear

that, as expected, the steepest-descent least squares algorithm achieves the highest level of attenuation in the
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sum of the squared error signals, while the minimax and adaptive error signal weighting algorithms achieve

a slightly lower, but similar level of control after convergence. That said, it can be seen that the converged

minimax algorithm shows significant variations about the converged level and this has been reported in (10).

These variations are produced as the algorithm switches between the minimisation of the different error sig-

nals depending on which has the largest magnitude at each iteration. The magnitude of these variations can

be reduced by reducing the convergence gain, α , however, this will inherently reduce the convergence rate of

the algorithm.
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(a) Sum of the squared errors signals.
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Figure 2 – The convergence of (a) the sum of the squared error signals and (b) the maximum squared error

signal for the steepest-descent least squares algorithm (blue), the minimax algorithm (10) (black), and the

proposed adaptive error weighting matrix steepest-descent algorithm (red).

Figure 2b shows the convergence of the maximum error signal for each of the three algorithms. From

this plot it can be seen that, as expected, the minimax algorithm and the adaptive error signal weighting

algorithm achieve a higher level of attenuation in the maximum error signal than the steepest-descent least

squares algorithm. However, once again it is clear that the minimax algorithm suffers from the problems due

to switching shown in the sum of the squared error convergence results.

An important property of the minimax algorithm is its ability to reduce the variation between the residual

error signals. It has previously been highlighted by Elliott et al (9) that the adaptive error signal weighting

method will only approximately minimise the infinity-norm of the error signals provided that p in equation 13,

or in the case of the proposed method equation 14, is set to a large value. In the presented simulation results

this parameter has been set to p = 20, however, it is important to verify that the algorithm has achieved the

same performance as the minimax algorithm. Therefore, Figure 3 shows the convergence of the individual

error signals for the three algorithms considered herein. From these results it can be seen that for the steepest-

descent least squares algorithm shown in Figure 3a there is a 6.5 dB difference between the maximum and

minimum error signal levels after convergence, while both the minimax algorithm and the adaptive error

signal weighting algorithm, shown in Figures 3b and 3c respectively show only 1.5 dB variation in the levels

between the maximum and minimum error signals.

To provide further insight into the behaviour of the minimax and adaptive error weighting algorithms,

Figure 4 shows the variation of the diagonal elements of the Q matrix over the first 10 seconds for the two

methods. From these results it can be seen that the elements of the Q matrix in the minimax algorithm are

characterised by rapid switching, whereas for the adaptive error signal weighting algorithm the elements of

the Q matrix can be seen to converge to a relatively constant value. For the minimax algorithm it can be

seen that Q1 is mainly zero and, correspondingly, the adaptive error weight is low. Conversely, for Q5 the

minimax algorithm shows a high density of switching between 0 and 1 and thus the adaptive error weight is

relatively close to unity. This difference in behaviour helps to indicate why the minimax algorithm suffers

from variations around the converged level.

The convergence conditions of the minimax and adaptive error weighting algorithms have been discussed

in the previous section, although no formal proof of stability has been provided due to the complexity of

studying such switched and time-varying controllers, although this intended for future work. Nevertheless, it

is interesting to highlight how the convergence behaviour of the minimax and proposed adaptively weighted

error signal algorithms differ for higher convergence gains. In general a higher convergence gain will provide
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(a) Steepest-descent, least squares.
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(b) Minimax algorithm.
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Figure 3 – The convergence of the individual squared error signals for (a) the steepest-descent least squares

algorithm, (b) the minimax algorithm (10), and (c) the proposed adaptive error signal weighting steepest-

descent algorithm.

a more rapid convergence provided that the controller remains stable, but this is likely to be traded-off for

a higher level of misconvergence. Figure 5 shows the convergence of the three algorithms when the conver-

gence gain for each has been increased to achieve a similarly rapid initial convergence. From these results

it can be seen that the steepest-descent least squares algorithm converges, in terms of both the sum of the

squared errors and the maximum error, to almost identical levels to those presented in Figure 2 for the slower

algorithm. The minimax and the adaptive error weighting algorithms, however, are more significantly affected

by the increased convergence speed. The adaptive error signal weighting algorithm now has a similar level

of variation to the slower minimax algorithm presented in Figure 2. Whereas the minimax algorithm now

has such a large level of variation that the algorithm is unlikely to be of any practical use. For example, in

an acoustic active noise control application the additional spectral components introduced by the algorithm

would be clearly audible. This highlights the potential limitations of the minimax algorithm proposed in (10),

which is acknowledged by the authors, but it also highlights the potential increase in convergence speed that

can be achieved using the proposed adaptive error signal weighting method.

5. CONCLUSIONS

Active noise and vibration control not only provides the potential to increase the levels of practical noise

or vibration reduction achievable compared to passive control techniques, but can also facilitate enhanced

manipulation of the noise or vibration. In this area, previous work has investigated control algorithms that

are able to provide a more spatially uniform response after control. In this paper it has been shown that the

previously proposed minimax algorithm suffers from variations, or chattering about the convergence point

due to the switching behaviour of the algorithm. To overcome this limitation, which becomes more signifi-
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Figure 4 – The error sensor weighting matrix Q plotted over time for the minimax (black) and adaptive error

signal weighting (red) algorithms.
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(a) Sum of the squared errors signals.
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(b) Maximum squared error signal at each iteration.

Figure 5 – The convergence of (a) the sum of the squared error signals and (b) the maximum squared error

signal for the steepest-descent least squares algorithm (blue), the minimax algorithm (10) (black), and the

proposed adaptive error weighting matrix steepest-descent algorithm (red).
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cant under rapid convergence, a new method of adapting the error signal weighting matrix has been proposed.

The proposed method adapts the diagonal elements of the error signal weighting matrix according to the p-th

power of the magnitude of the error signals normalised by the maximum error signal magnitude; thus, the

error weights are bounded between 0 and unity. It has been shown through a series of simulations employing

measured transfer responses that the proposed error weighting strategy overcomes the slow convergence lim-

itations of previously proposed error weighting strategies, which is a result of the weightings being bounded.

It has also been shown that the proposed control strategy does not suffer the same levels of variation about

the convergence point as the minimax algorithm. This means that the proposed strategy can achieve a faster

convergence rate for the same level of error as the minimax algorithm. The stability and convergence prop-

erties of the minimax and the proposed algorithm have been discussed, however, further work is planned to

provide a rigorous stability analysis.
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