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ABSTRACT
The time-domain finite-element method (TD–FEM) is a reliable numerical method for room acoustics sim-
ulation. With the recent progress in computer technology, the use of FEM at high frequencies has become a
realistic option. However, efficient simulation at high frequencies is still cited as a challenging task. One of
the key to realize such simulation is to reduce the discretization error called dispersion error. In this paper, the
applicability of an explicit TD–FEM with a dispersion reduction technique called modified integration rule on
room acoustics simulation at high frequencies is tested. First, an explicit scheme with frequency-independent
impedance boundary condition is derived for addressing boundaries with finite impedance. Then, the accu-
racy and efficiency of the explicit TD–FEM is demonstrated in comparison with an implicit TD–FEM for
sound field analysis inside a cubic cavity with rigid boundaries at the frequencies up to 8 kHz. Finally, the
accuracy of the explicit TD–FEM is examined for sound field analyses with finite impedance boundaries.
Results showed that the explicit method offered the same accurate results as the implicit method with less
computational time, whereas the implicit method was more efficient in term of memory requirement.
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1. INTRODUCTION
The time-domain finite-element method (TD-FEM) is a powerful wave-based numerical method for room

acoustics simulation with complex boundary conditions. Thanks to a drastic advancements in computer tech-
nology, the application of TD-FEM to room acoustics simulation at several kilohertz frequencies is becoming
a realistic option1, 2) although the cost-efficient simulation at high frequencies is still considered to be a diffi-
cult task due to the high computational cost. Inherent discretization error called dispersion error coming from
spatial and time discretizations of computational domain is one of the reasons for the high computational
cost.

The dispersion error is defined as the difference between the exact wave velocity and numerical wave
velocity, and the specific features are different numerical wave velocity at each frequency and the numerical
anisotropy of error magnitude in multi-dimensional analysis. Because of this error, a spatial discretization
requirement known as a rule of thumb is imposed in the mesh generation process to yield reliable results.
Also, time discretization error must be considered in time-domain analysis. These requirements engender the
solution of large-scale problems with many degrees of freedom (DOF) and many time steps for the simulation
at high frequencies.

Many dispersion reduction methods have been developed to increase the computational efficiency2, 3, 4, 5, 6, 7)

. The authors have also proposed some TD-FEM2, 7) to solve the large-scale problems efficiently. Also, an
explicit TD-FEM with a simple dispersion reduction technique called modified integration rules (MIR)5)

exists, in which fourth-order accuracy with respect to the dispersion error can be obtained for idealized case
using square or cubic FEs. Although the explicit method is very attractive because of its simplicity, the dis-
sipation term for treating the absorption at boundaries, which is important for room acoustics simulation,
was not considered in the formulation presented in the literature. When a sound field inside room with finite
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impedance boundaries is analyzed using this explicit method, a time derivative of sound pressure related to the
dissipation term has to be approximated by less-accurate backward difference even though time derivatives of
other physical quantities can be approximated by the second-order accurate central difference. Therefore, the
accuracy and efficiency of the explicit TD-FEM on room acoustics simulation still remain unclear, especially
for high frequency region.

The purpose of this paper is to present the accuracy and efficiency of the explicit TD-FEM on room
acoustics simulation at high frequencies through the numerical experiments in three-dimensions. First, we
describe the theory of the explicit TD-FEM with dissipation term as well as an implicit TD-FEM. Then, the
accuracy and efficiency of the explicit method is demonstrated in the comparison with the implicit method
for sound field analysis inside a cubic cavity with rigid boundaries. Here, the accuracies of both methods are
estimated using the analytical solution. Finally, the effect of using the backward difference approximation
in the explicit method with dissipation term on resulting accuracy is tested for sound field analysis inside a
cubic cavity with finite impedance boundaries.

2. TIME-DOMAIN FINITE-ELEMENT METHOD
2.1 Implicit method

We consider a closed sound fieldΩ with rigid boundary, vibration boundary and impedance boundary
governed by the wave equation. By introducing the FE approximations to sound pressure and weight function
in the weak form derived from the wave equation, the semi-discretized matrix equation for the sound field
can be obtained as

MMMp̈pp+c2
0KKKppp+c0CCCṗpp= fff , (1)

whereMMM, KKK andCCC, respectively, denote the global mass matrix, the global stiffness matrix, and the global
dissipation matrix constructed by respective element matricesmmme, kkke andccce. Further,ppp, fff , c0, respectively,
denote the sound pressure vector, the external force vector, and the speed of sound.· and·· respectively signify
first-order and second-order derivatives with respect to time. The respective element matrices forMMM, KKK and
CCC are defined as

mmme =
∫

Ωe

NNNTNNNdΩ, (2)

kkke =
∫

Ωe

∇NNNT∇NNNdΩ, (3)

ccce =
1
zn

∫
Γe

NNNTNNNdΓ. (4)

Here,NNN andzn, respectively, represent the shape function and the normalized acoustic impedance ratio.Ωe
andΓe respectively represent the region and surface areas to be integrated. The sound pressureppp in time
domain is calculable applying a direct time integration method such as Newmarkβ method8) to Eq. (1).

An efficient formulation7) is used to solve the Eq. (1) with many DOF, in which 8-node hexahedral
elements and Fox-Goodwin method, which is a family of Newmark method, are respectively used for spatial
and time discretizations, with MIR5). A krylov subspace iterative method is also used to solve the large-scale
linear system of equations at each time step efficiently.

MIR is a simple method to reduce the dispersion error by modifying numerical integration points ofmmme
andkkke from conventional points, and it provides fourth-order accuracy with respect to dispersion error for
an idealized case. The modified integration points for FG method areαm = αk = ±

√
2/3 with unit weight

coefficient, whereαm, αk are numerical integration points in Gauss-Legendre rule for calculatingmmme and
kkke. Further advantages can be obtained by using the MIR, i.e., relaxation effect of stability condition and
improvement in convergence property of an iterative method.

For the analysis using only rectangular FEs in three dimensions, the relaxed stability condition is given
as7)

∆t ≤ 1

c0

√
1
d2

x
+ 1

d2
y
+ 1

d2
z

, (5)

wheredx, dy anddz respectively represent element length inx, y andz directions. The three-dimensional
dispersion relation and the efficiency of this formulation can also be found in a reference7).

2.2 Explicit method
In contrast to the implicit method, the explicit method solves first-order ordinary differential equation. By

introducing a diagonal mass matrixDDD and a vectoṙppp= vvv, the second-order ordinary differential equation of
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Eq. (1) can be transformed into4)

DDDṗpp= MMMvvv, (6)

DDDv̇vv= fff −c2
0KKKppp−cCCCṗpp. (7)

Discretizations oḟppp in Eq. (6) andv̇vv in Eq. (7) using second-order accurate central difference andṗpp in Eq.
(7) using first-order accurate backward difference lead to the following explicit scheme as

pppn = pppn−1+∆tDDD−1MMMvvvn− 1
2 , (8)

vvvn+ 1
2 = vvvn− 1

2 +∆tDDD−1
[

fff n−c2
0KKKpppn− c0

∆t
CCC(pppn− pppn−1)

]
, (9)

wheren represents the time step. For further numerical efficiency,MMM andKKK are stored by sparse matrix stor-
age format and lumpedCCC is used. Here, these techniques are naturally used in the above-mentioned implicit
method. Therefore, two sparse matrix-vector productsMMMvvvn− 1

2 andKKKpppn are the main numerical operations of
this scheme. According to a reference5), an element matrix ofDDD is lumped using standard Gauss-Legendre
rule. Meanwhile, element matricesmmme andkkke are constructed using MIR where the respective modified inte-
gration points are given as5)

αk =

√
2
3
, αm =

√
1
3

[
4−

(
c0∆t

d

)2]
. (10)

Here,d is the element length of cubic elements. This scheme provides fourth-order accuracy with respect to
dispersion error for idealized case using cubic elements in free space5).
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Figure 1 – A benchmark problem, B0-1T.

3. NUMERICAL EXPERIMENT
3.1 Cubic cavity with rigid boundaries

The sound field analysis inside a cubic cavity with rigid boundaries, which is a problem, “B0-1T, Task
A”, in the benchmark platform on computational methods for architectural/environmental acoustics9), was
selected to compare the accuracy and efficiency between the implicit method and the explicit method because
the analytical method10) is available. It is a problem of computing transient response at three receiving points
R2, R3 and R4 inside a cubic cavity (Figure1), in which c0 and air densityρ0 were respectively assumed
to be 343.7 m/s and 1.205 kg/m3. For quantitative estimation of accuracy of either formulation, the relative
error in the sound pressure between the analytical method and the numerical method was defined as

||e||2 =
1

Nstep
· ||pana.− pFEM||2

||pana.||2
, (11)

wherepana. and pFEM are the sound pressure obtained from the analytical method and FE analysis, respec-
tively. Nstepand|| · || represent the number of time step and 2-norm, respectively.
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Figure 2 – Waveform of sound source and its frequency characteristics.

3.1.1 FE setup
The sound source used here was a modulated Gaussian pulse. Its waveform and frequency characteristics

are depicted in Figure2. Here, upper limit frequency was assumed as 8 kHz where the gain is -3 dB. An
FE mesh with spatial resolutionλ/d=6.8 was constructed using only cubic elements, whereλ represents
the wavelength at upper limit frequency. The DOF of the FE mesh is 4,173,281. The sound pressure was
calculated up to 0.01 s with∆t=1/96,000 s, which was determined by the stability condition of Eq. (5). It is
noted that Eq. (5) is not exact stability condition for the explicit method, but it is considered as the safe side
because the stability condition of the explicit method in two-dimensional analysis is slightly looser than that
of the implicit method5).

A diagonal scaled conjugate gradient iterative solver was used to solve the linear system of equations in
the implicit method, in which the convergence tolerance used in a stopping criterion was set to 10−6.
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Figure 3 – Comparisons of sound pressures at R2 obtained from analytical method and TD-FEM with FE
mesh ofλ/d=6.8: (a) Analytical vs Implicit and (b) Analytical vs Explicit.

Table 1 – The relative error||e||2 at each receiving point for implicit and explicit methods with FE mesh of
λ/d=6.8

||e||2, %
Method/Receiving point R2 R3 R4

Implicit 0.013 0.012 0.019
Explicit 0.025 0.024 0.038

3.1.2 Results and discussion
Figure3 (a) and (b) respectively present the comparisons of the sound pressures at R2 obtained from the

analytical method and the implicit/explicit methods. Overall, the sound pressures obtained by both implicit
and explicit methods agree well with the analytical solution, but larger numerical oscillation can be observed
in the sound pressure obtained from the explicit method. Table 1 lists the relative error at each receiving points
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for both schemes where the relative errors of the explicit method are approximately two times larger than
those of the implicit method at all receiving points. This is because the magnitude of the spatial discretization
error in the explicit method is larger than that in the implicit method, which can be confirmed using the
two-dimensional dispersion relation in both methods. The dispersion relation of the implicit method is given
as5)

|c0−ch|
c0

≈ (kd)4

480
|(1− τ4)−3cos2 θ sin2 θ |, (12)

with
τ = c0∆t/d. (13)

Herech, k andθ represent numerical wave velocity, wavenumber and a direction of wave propagation in two
dimensional polar coordinate system. For the explicit method, the relation is5)

|c0−ch|
c0

≈ (kd)4

1440
|(8−10τ2+2τ4)− (19−20τ2+5τ4)cos2 θ sin2 θ |. (14)

The relationships between maximum dispersion errors and spatial resolutions calculated by the dispersion
relations are presented in Figure4.

Implicit

Explicit

Figure 4 – A comparison of dispersion errors of the implicit and the explicit methods as a function of spatial
resolution.

The maximum dispersion errors at the upper limit frequency are 0.13% in the implicit method and 0.24%
in the explicit method, respectively. For the explicit method, the use of the FE mesh with approximately
λ/d=8.0 is necessary to obtain the same accurate results as the implicit method. Considering this, a com-
parison of sound pressures obtained from the analytical method and the explicit method with FE mesh of
λ/d=8.0 is shown in Figure5. Here, the DOF of the FE mesh was 6,539,203 and∆t was set to 1/120,000 s.
The agreement of sound pressures between them was improved with the relative error of 0.013%, which is
the same magnitude as the implicit method.

In comparison of computational cost in both methods to obtain the same accurate results, computational
time of the explicit method was only 1/2.4 of the implicit method, whereas the explicit method required 1.4
times larger memory than the implicit method.

3.2 Cubic cavity with impedance boundaries
Sound fields inside the cubic cavity (Figure1) with finite impedance boundaries were computed to reveal

the effect of the use of the backward difference in dissipation term of the explicit method on resulting ac-
curacy, and the computed sound pressures were compared with reference solution obtained by the implicit
method. In the computations, the different degrees of absorption was given on the floor. The accuracy was
also estimated using the relative error defined by Eq. (11), but the reference solution was used instead of the
analytical solution.

3.2.1 FE setup
Regarding the absorption conditions, frequency independent normalized acoustic impedance ratioszn’s

corresponding to statistical absorption coefficientαs of 0.2, 0.4, 0.6 and 0.8 were given for the floor, where
thezn’s were calculated using Paris’ formula11) with an assumption thatzn is a real number.zn corresponding
to αs=0.01 was given for remaining boundaries.
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Figure 5 – A comparison of sound pressures at R2 obtained from analytical method and explicit method with
FE mesh ofλ/d=8.0.

The FE meshes withλ/d=6.8 and 8.0 were respectively used for the implicit method and the explicit
method. The sound pressure was calculated up to 0.01 s with∆t of 1/120,000 s. Other settings are the same
as previous section.

3.2.2 Results and discussion
As an example, Figure6 (a) and (b) respectively present a comparison of sound pressure at R3 obtained

from the implicit method and the explicit method for the cases withαs = 0.2 and 0.8, in which good agreement
can be found in sound pressures calculated by both methods, irrespective of degree of absorption. Table 2 lists
the mean relative error over receiving points for all cases. Here, reference value of the mean relative error
is also presented as “rigid”, which was calculated from a condition that all boundaries are rigid. From the
table, the magnitude of mean relative errors for all absorbing conditions are almost the same as the reference
value from which it can be concluded that the use of first order backward difference in dissipation term has
no effect on resulting accuracy. Further, this indicates that the use of∆t determined by the stability condition
of Eq. (5) provides sufficiently small value for approximatingṗpp in Eq. (7).
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Figure 6 – Comparisons of sound pressures at R3 obtained from implicit method and explicit method: (a)
αs=0.2 and (b)αs=0.8.

Table 2 – The mean relative error||e||2 for various absorption conditions

||e||2, %
Rigid αs=0.2 αs=0.4 αs=0.6 αs=0.8

2.57×10−3 2.12×10−3 2.14×10−3 2.69×10−3 3.90×10−3

4. CONCLUSIONS
In this paper, the accuracy and efficiency of an explicit TD-FEM with MIR on room acoustics simu-

lation at high frequencies was tested through the numerical experiments in three-dimensions, in which the
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computational efficiency was estimated with the implicit TD-FEM for idealized case using only cubic FEs.
The numerical results showed that the explicit method is computationally more efficient than the implicit

method from the perspective of computational time. It was also revealed that the backward difference ap-
proximation of first order time derivative of sound pressure in the dissipation term has no effect on resulting
accuracy with the time interval determined by the stability condition of Eq. (5). Future works are neces-
sary to reveal the applicability of the explicit method for more generalized cases using the rectangular and
the distorted FEs. Derivations of dispersion relation and stability condition of the explicit method in three
dimensional sound field are also subject of future research.
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