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ABSTRACT 

A finite circular cylindrical shell model coupled with elastic beams is built in this paper. The beam-shell 
structure is connected with linear springs and rotational springs. Considering different structural coupling 
conditions, the Rayleigh-Ritz approach based on improved Fourier series method is employed to analyze 
the free vibration properties of the calculation model. The improved Fourier series method is used to 
describe the displacements of the coupling structure, while the Rayleigh-Ritz method is utilized to solve the 
coefficients. The important advantage of this approach is that it can be universally applied to the coupling 
structure with a variety of different boundary and coupling conditions. The results are verified by the finite 
element method. It's shown that the proposed approach is a convenient, efficient and accurate one for 
determining the modal behavior of such a complex structure system. 
 
Keywords: beam-shell structure, coupling conditions, Rayleigh-Ritz approach, improved Fourier series 
method  

1. INTRODUCTION 
The vibration studies of a finite circular cylindrical shell model coupled with elastic beams have 

separately received a great deal of attention. When the two structures are coupled together the behavior 
of the resulting structure is more complex and, consequently, there is less literature available on the 
topic. However, the study of these combined structures is of great importance in many engineering 
applications, such as in the design of aeronautical or space structures, submarine structure and 
industrial vessels. This paper investigates the free vibration characteristics of one variant of these 
structures. 

In recent years, many efforts have been made on vibration analysis with relatively simple structures 
such as beams and cylindrical shells. As far as elastic beams are concerned, a large body of literature 
exists. Hsien-Yuan Lin1,2 used numerical assembly method to study the free and forced vibration of 
multi-span beam with various intermediate unit (including the middle support, lumped mass, mass 
spring system, etc.). W.L.Li 3 , 4 , 5  proposed an improved Fourier series method to establish the 
multi-span beam model with the elastic support and calculated the natural characteristics and dynamic 
response under moving load. Cao Yipeng6 used the Rayleigh-Ritz method based on an improved 
Fourier series to solve the coupled three-dimensional beam. For circular cylindrical shells, Zhou 
Haijun7 solved the free vibration of cylindrical shell under elastic support boundary condition with 
fluctuation analysis method, in which he analyzed the influence of boundary stiffness to natural 
frequency of cylindrical shell. Dai Lu 8  applied exact Fourier series as displacement admissible 
function and substituted it into governing equation to solve the free vibration characteristic of 
cylindrical shell under any boundary conditions, of which the results show that the accuracy is higher. 
As to combine shell-plate structures, less literature is available. Missaoui 9  established variation 
equation of coupled structure by simulating the coupling system via introducing spring. Guo10, 11 
focused on the influence of internal structure to structure vibration. He applied the displacement 
admittance theory to obtain the effect of force and moment between plate and shell, thus he made great 
contribution to the influence of coupling between internal and shell structure. 
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2. Theoretical model 

2.1 Description of the model 

The co-ordinate system and various diagrams illustrating the parameters used in the model are 
shown in Figure 1. The structure consists of a finite circular cylindrical shell coupled with elastic 
beams at middle of the shell. The shell has a length L and is assumed to be thin; that is, its wall 
thickness h is much smaller than its radius R. Therefore, the conventional assumptions of flűgge's 
shell equation are adopted. The shell displacement is represented by U, V and W, which are, 
respectively, axial displacement, tangential displacement and radial displacement.  

                     
        (a)          (b) 

 
     (c)          (d) 

Figure 1- Structure diagram of the structure : (a) beam-shell structure; (b) cylindrical shell; 
(c) beam; (d) beam-shell interface at x=L/2 

For the beam, the beam i has a length LBi, and its cross-section is square, the length of the square 
is b which is much smaller than the beams' length, therefore, It is assumed that beam is Euler 
Bernoulli beam. The beam displacement is represented by Ui, Wi,y, Wi,z and θi, which are 
respectively, axial, vertical and horizontal displacement and rotation angle around x-axis of the ith 
beam. The beam-shell joint at x=L/2 can be seen in figures 1(d). Boundary and coupling of the 
beam-shell structure are constrained by linear springs and rotational springs as shown in Figure 1. 
By changing the stiffness of springs from zero to infinite, it is easy to obtain the clamped, simply 
supported and free boundary conditions. The form of springs is shown in Table 1. 

Table 1-The form of springs 

Ki 

axial-direction  

spring 

tangential -direction  

spring 

radial -direction  

spring 
torsion spring 

K0 k1 k2 k3 k4 

KL k5 k6 k7 k8 

 

Ki 
x-direction 

spring 

y-direction 

spring 

z-direction 

spring 

around x-axis 

torsion spring

around y-axis 

torsion spring 

around z-axis 
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2.2 Series representations of the displacement functions 

2.2.1 Series representations of the displacement functions 

Axial, tangential and radial displacement can be respectively represented as follows: 
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Where, ω is the angular frequency. The displacement admissible function of cylindrical shell can be 
represented as improved Fourier series form. The improved Fourier series expansion can be written as: 
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Where, ξ is the additional auxiliary function to make the boundary continuous. They are continuous 

and derivable functions which satisfy the boundary conditions. Auxiliary polynomial function form is 
given here: 
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2.2.2 Series representations of the displacement functions 

Axial, vertical and horizontal displacement and rotation angle around x-axis of the ith beam can be 
respectively represented as follows: 

  (4) 
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Where, the subscript i is on behalf of the beam i. ω is the angular frequency. According to the 
literature4, the displacement admissible function of beam i can be represented as improved Fourier 
series form. ф represent ui, wi,y, wi,z or θi the improved Fourier series expansion can be written as: 

  (5)
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2.3 Series representations of the displacement functions 

According to the coupling beam system shown in Figure 1, the Lagrange function can be expressed 
as: 

  (6)
 C S S S B B B   BcL V - T - Q V - T - Q V V
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Where Vs and VB are respectively, the potential energy of the beam-shell structure, including their 
strain energy and the potential energy stored in the boundary spring and the potential energy associated 
with the coupling springs. TS and TB are their kinetic energy. QS and QB are the work done by external 
forces. VC represents the potential energy stored in the coupling springs between the beam and 
cylindrical shell. These terms are 
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Where, ρ, μ and E are, respectively, the density, Poisson ratio, and Young’s modulus of the shell 
material. The same symbols, with the subscript “B” added, are used to denote the equivalent 
characteristics of the beam material. 

Substituting Eq. (2), Eq. (5) and Eqs.(7-14) into Eq.(6) and using Rayleigh-Ritz method to solve 
the Fourier and auxiliary polynomial coefficients. We can get the dynamic equilibrium equation of the 
coupling systems: 

  2 K ω M C F  (15) 

Where the matrix K is the stiffness matrix of the system, the matrix M is the mass matrix of the 
system, the vector C is the coefficient vector, the vector F is the outside force vector  

Once the stiffness and mass matrices are calculated, the responds of the coupling system caused by 
the external force can be calculated form Eq.(15). It is noteworthy that the modal properties can also be 
obtained from Eq. (15) by setting the external force vector to zero and solving a simple matrix 
eigenvalue problem. The modal frequencies for the structure are directly related to the eigenvalues. 
The actual modes, however, will have to be determined by substituting the eigenvectors into Eq.(1,2) 
and Eq.(4,5), because each of the eigenvector contains all the Fourier coefficients for the 
corresponding mode. 

3. Discussion 
As shown in Figure 1, The end of the shell is fixed onto the ground, corresponding spring stiffness 

are 1e10N/m. The left end of the vertical beam (Beam 1) is rigid connected with the shell, The left end 
of the vertical beam (Beam 1) is rigid connected with Horizontal beam (Beam 2) through the coupling 
springs. The coupling spring stiffness of the structure is 1e10N/m. The rest spring stiffness is 0.The 
properties for this beam-shell structure are summarized in Table 2. For model validation, this problem 
is solved using both the current method and the commercial finite element code, ANSYS. 

Table 2-Parameters of each beam.  

Parameter Unit Beam1 Beam2 

LB m 0.24 0.8 

SB m2 0.0009 0.0009 

IB m4 6.75e-8 6.75e-8 

EB Nm-2 2.1e11 2.1e11 

pB Kgm-3 7800 7800 
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Table 3-Parameters of shell.     

Parameter Unit Shell 

R m 0.247 

h m 0.006 

E N/m2 2.1e11 

ρ kg/m3 7785 

   0.3 

 

Table 4-Natural frequency comparison of coupling beam with vertical angle.     f/Hz 

Model Current FEA error% 

1 13.587 13.104 3.55 

2 79.524 74.279 6.59 

3 199.039 199.55 0.26 

4 268.901 275.93 2.61 

5 302.436 306.76 1.43 

6 354.092 354.99 0.25 

7 414.566 392.16 5.40 

8 516.136 516.03 0.02 

9 562.037 534.85 4.84 

10 612.077 590.33  3.55 

11 654.783 622.41 4.94 

12 736.052 708.33 3.77 

13 1158.369 1135.4 1.98 

 
 

From Table 4, an excellent agreement is observed between these two sets of solutions with a 
maximum difference less than 5.4%. It illustrates the high precision and correctness of this method to 
solve natural frequencies of shafting. From Figure 2, it can be seen that the two sets of modes are 
essentially identical. 
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(e) 

Figure 2 - Comparison of the shafting model shapes: (a) third; (b) fourth; (c) fifth; (d) seventh; 

(e) tenth; 
From figure 2, modes which are obtained by the two methods are the same. Compare two kinds of 

method; the result matches very good, showing that the current method can be used to calculate the 
free vibration properties of the beam-shell structure.    

4. CONCLUSIONS 
A general analytical method has been developed for the Beam-Shell structure. Basing on the 

improved Fourier series method, the free and forced vibration characteristics are calculated. The 
results are compared with that by using finite element methods. The conclusions are as follows: 

1. Based on the improved Fourier series method, displacement admissible function of beam and 
shell vibration is established. Rayleigh-Ritz method is utilized to solve the Fourier coefficient and 
auxiliary polynomial coefficients. The results show that the calculation program is simple and accurate 
which can be used to simulate the structure vibration properties with arbitrary boundary conditions 
considering different boundary spring stiffness.  

2. The free and forced vibrations for propulsion shafting are investigated. The results indicate this 
method is accurate and reliable by comparing with the FEM, and can be used in the acquisition of 
shafting vibration. 
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