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ABSTRACT 

Reducing vibration energy of mechanical structures by controlling energy dissipation is important for 

improving structure-borne noise, such as interior noise in a vehicle. In this study, vibration transfer 

characteristics are investigated using vibration energy evaluation, when no particular vibration mode is 

dominant. A beam structure modeled by Finite Element approach is used as an example. We examine the 

efficient method of determining effective position to add damping. The method using distribution of 

dissipation power and that using damping addition sensitivity analysis of the vibration energy are examined. 

In the resonance excitation case, the optimum damping layout for vibration suppression can be determined 

by both methods. On the other hand, in the non-resonance excitation case, no obvious correlation is found 

between the optimum damping layout and the distribution of dissipation power. However, the analysis of 

damping addition sensitivity leads the optimum damping layout even if the excitation frequency is 

non-resonance. 
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1. INTRODUCTION 

To improve noise field such as interior noise in a vehicle, reduction of vibration propagation is 

important. Vehicle noise is influenced by many kinds of vibration transfer in structures such as body 

panels, chassis frames, suspension arms, drive shafts, exhaust pipes, and tires. Modal analysis is 

generally used to examine these phenomena (1). However, in mid-frequency, modal analysis has 

difficulty due to density of vibration modes. Furthermore, tire is made of polymer, and some 

structures have been replaced by plastic or FRP because of weight saving. So vibration of structures 

with high damping becomes important. High damping structure also has tendency to raise modal 

density. Therefore, vibration reduction in non-resonance excitation case becomes important in which 

plural modes contribute simultaneously. 

To examine vibration transfer or vibration power flow, structural intensity has been proposed (2, 

3). Vibration has been reduced using damping material effectively considering power dissipation (4, 

5). The modal expansion technique of structural intensity has been proposed (6). However most of 

these studies target resonance condition. 

In this paper, we investigate reduction of the structure vibration energy, focusing on the energy 

dissipation caused by damping. Not only resonance condition but also non-resonance condition is 

evaluated. We examine the efficient method of determining effective position to add damping. Two 

kinds of method are examined. The one is distribution of the dissipation power and the other is 

damping addition sensitivity analysis of the vibration energy. A beam structure modeled by Finite 

Element approach is used for simplicity. 

2. THEORY OF BEAM VIBRATION 

2.1 Finite Element Analysis of Bending Vibration of Beam 

Fig. 1 shows a uniform beam along x-axis. For the bending vibration of the beam with harmonic 

excitation, vibration characteristic is evaluated using Finite Element analysis. 
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Figure 1 – A beam model 

 

When the harmonic excitation force with amplitude F and angular frequency ω 
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is applied to the beam, the steady-state response displacement can be expressed as follows, using 

complex displacement amplitude u: 
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where j is an imaginary unit. 

The displacement amplitude u can be expressed as follows: 
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where M is the mass matrix, C is the damping matrix, and K is the stiffness matrix. 

2.2 Steady-State Vibration Energy 

In this paper, steady-state vibration energy of the beam is used as an index to express the strength 

of vibration. The period average �̅�𝑈 of the steady-state strain energy of the beam can be expressed 

as follows: 
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where Tc is period, Re[] means real part, Im[] means imaginary part , and a transpose is denoted by T.  

In the same way, the period average �̅�𝐾 of the steady-state kinetic energy can be expressed as 

follows: 
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The period average �̅� of the total vibration energy is 

KU EEE   (6) 

2.3 Variation in Vibration Energy Caused by Damping Addition 

As the way of modifying structure to reduce vibration energy, damping material addition is 

supposed. The element damping matrix Ci of one element i of the beam can be modified to (1+α)Ci 

by adding damping. The period average of the vibration energy with additional damping, calculated 

by Eq. (5), is expressed as �̅�𝑖. Then, the amount of change from initial condition 

EEE ii   (7) 

means the variation of vibration energy of the beam caused by damping addition to the element i. By 

calculating this amount concerning each element of the beam, the distribution of influence of each 

element damping is obtained. This distribution shows the effective damping addition area to reduce 

vibration energy. In this paper, this evaluation method is called repeated dynamic analysis. The result 
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of this method is used as semi-optimum solution. 

3. EXAMINATION OF EFFICIENT METHOD OF DETERMINING THE EFFECTIVE 

POSITION TO ADD DAMPING 

In this paper, the bending vibration of a beam with uniform material damping is investigated. The 

efficient method of determining the effective position to add damping in order to reduce the 

vibration energy is examined. “Efficient method” means that repetition of dynamic analysis is 

unnecessary.  

3.1 Method using Distribution of Dissipation Power 

 Direct Method 3.1.1
We hypothesized that if the beam has uniform damping in the initial state, the addition of 

damping in areas of high dissipation power should be effective. So, the distribution of dissipation 

power is evaluated to determine the position to add damping. 

At one element i, the period average of dissipation power due to damping can be expressed as the 

work of damping force: 
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Where complex conjugates is denoted by *. By calculating it about all elements of the beam, the 

distribution of dissipation power is obtained. 

Additionally, the period average of strain energy of the element i can be expressed as follows:  
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So, in proportional viscous damping system, the distribution of dissipation power is in proportion to 

the distribution of strain energy. In this paper, Eq. (8) is called direct method.  

 Structural Intensity Method 3.1.2
The period average I of the structural intensity for the bending vibration of a uniform beam can 

be expressed as the passage of energy in a unit section in a unit time (6):  
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where Q is the shearing force, w is the translation displacement in the z direction, M is the bending 

moment, θ is the angular displacement of the y-axis circumference, and A is the cross-sectional area 

of the beam. 

At each element, the difference between inflow intensity and outflow intensity means power 

dissipated in the element. 

outiinii III ,,   (11) 

By calculating it about all elements of the beam, the distribution of dissipation power is obtained. 

In this paper, Eq. (11) is called intensity method. 

3.2 Method using Sensitivity Analysis of Vibration Energy 

We propose damping addition sensitivity analysis of vibration energy. At a structure shown in Fig. 

2, damping αCi is added to element i, whose initial element damping matrix is Ci. 



Page 4 of 10  Inter-noise 2014 

Page 4 of 10  Inter-noise 2014 

 

Figure 2 – A diagram of damping addition sensitivity analysis 

 

When excitation force Fa is applied at node a, the response displacement can be expressed as 

follows: 
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where ua is the displacement of the excitation node a, ub is the displacement of one node b, ui is the 

displacement of damping added element i, and Gxx are the initial Compliance matrixes. 

When Eq. (12) is differentiated with design variable α, the following equation is obtained. 
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Sensitivity is Eq. (13) with α=0, so the damping addition sensitivity of displacement can be 

obtained as follows:  
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The damping addition sensitivity S of the period average of the vibration energy can be calculated 

by differentiating the energy formulas Eq. (4)~(6) with variable α. 
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where SU and SK are the sensitivity of the period average of the strain energy and the kinetic energy, 

and du/dα is the column vector of the sensitivity of all node’s displacement. 

By calculating Eq. (15) with damping addition to each of all elements, the distribution of the 

damping addition sensitivity of the vibration energy can be obtained.  

4. VALIDATION OF THE EVALUATIO METHOD OF DAMPING ADDITION 

4.1 Description of the Beam Model 

We use a beam structure shown in Fig. 1, modeled by Finite Element approach. The beam is 

constructed of brass and has a rectangular section. The boundary condition is free-free. The input 

force is a harmonic vertical excitation of 1 N at a position 0.4 m from the left. The model has 

proportional viscous damping. The damping matrix C is expressed as follows: 

KC   (18) 

The factor of proportionality is β=0.0003. To evaluate high damping condition, the factor is set to 

slightly higher value. 

We consider the issue of determining the effective position to add damping in order to reduce the 
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steady-state vibration energy �̅�. The methods of determining the effective position to add damping 

are validated. 

4.2 Resonance Excitation Case 

In the first case, the excitation frequency is 38.2 Hz, which is the third resonance frequency. The 

shape of vibration response is shown in Fig. 3. Because of the th ird resonance excitation, the third 

bending mode is dominant. 

 

Figure 3 – Shape of vibration response at resonance condition 

 

 Calculation of Optimum Damping Addition (Resonance Case) 4.2.1
Fig. 4 shows the energy variation calculated using the repeated dynamic analysis, expressed in Eq. 

7. Damping matrix of each element of the whole beam is increased by 1 % sequentially. The result 

shows that the steady-state vibration energy can be reduced effectively when damping is added at the 

0.2 m, 0.5 m, or 0.8 m position. We treat it as the semi-optimum solution. 

 

Figure 4 – Energy variation caused by adding damping 

 

 Validation of the Method using Distribution of Dissipation Power (Resonance Case) 4.2.2
First, the method using distribution of dissipation power is validated. Fig. 5 shows the result of 

the calculated structural intensity of the beam. The power flow in the direction of the x-axis is 

positive. The discontinuous position 0.4 m is the excitation point. The negative slope means that 

energy is dissipated in the elements. 

 

Figure 5 – Calculated structural intensity at resonance condition 

 

Based on Eq. (11), the distribution of the dissipation power can be calculated from the intensi ty. 

The result is shown in Fig. 6 with thin line. The dissipation power is large at the 0.2 m, 0.5 m, and 

0.8 m. This result is equal to the result of the direct method shown with bold line. Because these 

results seem to correlate the semi-optimum solution of damping addition, it is validated that the 

effective position to add damping can be determined using either dissipation power method - the 
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direct method or the intensity method. 

 

Figure 6 – Distribution of dissipation power at resonance condition 

 

 Validation of the Method using Sensitivity Analysis (Resonance Case) 4.2.3
Next, the method using sensitivity analysis is validated. The upper section of Fig. 7 shows the 

real part and imaginary part of the displacement amplitude. The middle section of this figure shows 

the damping addition sensitivity of displacement calculated from Eq. (14). The color contour 

expresses sensitivity. When damping is added at the positon expressed by the vertical axis, 

distribution of sensitivity of displacement appears, which is shown as one horizontal line of this 

color contour chart. Damping addition at 0.2 m, 0.5 m, and 0.8 m has reduction sensitivity for the 

imaginary part which is dominant in the complex displacement amplitude.  

 

Figure 7 – Damping addition sensitivity of displacement 

 

Based on these results, the damping addition sensitivity of the steady-state vibration energy is 

calculated as shown in Fig. 8, using Eq. (15). There is negative sensitivity at 0.2 m, 0.4 m, and 0.8 m. 

This result correlates to the semi-optimum solution. So it is validated that the effective position to 

add damping can be determined using this sensitivity analysis. 

 

Figure 8 –Damping addition sensitivity of the steady-state vibration energy 

 

From the above, it is clarified that the effective position to add damping can be determined using 

either the dissipation method or the sensitivity method. 
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In this section, the excitation frequency is set to 46 Hz which is a non-resonance frequency. We 

0 0.2 0.4 0.6 0.8 1
0

2

4

x 10
-4

Position [m]

D
is

si
p

at
io

n
 p

o
w

er
 [

W
]

0 0.2 0.4 0.6 0.8 1
0

2

4

x 10
-4

Position [m]

D
is

si
p

at
io

n
 p

o
w

er
 [

W
]

 

 
Direct method

Calculate from I

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0
x 10

-5

Position [m]

S
en

si
ti

v
it

y
 [

J/
-]

0 0.2 0.4 0.6 0.8 1
-1

0

1
x 10

-5

0 0.2 0.4 0.6 0.8 1
-1

0

1
x 10

-5

0 0.2 0.4 0.6 0.8 1
-5

0

5
x 10

-4

Position [m]

D
is

p
la

c
e
m

e
n

t 
[m

]

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

-4

-3

-2

-1

0

1

2

3

4
x 10

-8

+ 

- 

0 

-1.0E-4

-5.0E-5

0.0E+0

5.0E-5

1.0E-4

0 0.2 0.4 0.6 0.8 1

D
is

p
la

ce
m

en
t 

[m
]

Position [m]

-1.0E-4

-5.0E-5

0.0E+0

5.0E-5

1.0E-4

0 0.2 0.4 0.6 0.8 1

D
is

p
la

ce
m

en
t 

[m
]

Position [m]

(a) Real part (b) Imaginary part 

0 

1 

0 

1 

D
am

p
in

g
 a

d
d
it

io
n
al
 

p
o
si

ti
o
n
 [

m
] 

D
am

p
in

g
 a

d
d
it

io
n
al
 

p
o
si

ti
o
n
 [

m
] 

S
en

si
ti

v
it

y
 [

m
/-

] 

0 0.2 0.4 0.6 0.8 1
-5

0

5
x 10

-4

Position [m]

D
is

p
la

c
e
m

e
n

t 
[m

]
D

is
p

la
ce

m
e
n
t 

[m
] 

D
is

p
la

ce
m

e
n
t 

[m
] 



Inter-noise 2014  Page 7 of 10 

Inter-noise 2014  Page 7 of 10 

evaluate the effective damping position in the same manner as the resonance excitation case.  

The shape of vibration response is shown in Fig. 9. Because of non-resonance excitation, no 

particular mode is dominant. Mainly the third and fourth bending modes contribute. 

 

Figure 9 – Shape of vibration response at non-resonance excitation 

 

 Calculation of Optimum Damping Addition (Non-Resonance Case) 4.3.1
In the same manner as the previous section, the semi-optimum solution of damping addition 

position calculated using the repeated dynamic analysis is shown in Fig. 10. The vibration energy 

can be reduced effectively when damping is added at 0.2 m and 0.4 m position.  

 

Figure 10 – Energy variation by damping addition, at non-resonance condition 

 

 Validation of the Method using Distribution of Dissipation Power (Non-Resonance 4.3.2
Case) 

The structural intensity and distribution of dissipation power are shown in Fig. 11 and 12. T he 

results of dissipation power of the direct method and intensity method are the equal. However, no 

obvious correlation is found between the semi-optimum damping layout and the distribution of 

dissipation power. 

 

Figure 11 – Calculated structural intensity at non-resonance condition 

 

 

Figure 12 – Distribution of dissipation power at non-resonance condition 

 

0 0.2 0.4 0.6 0.8 1

-1

0

1
x 10

-4

Position [m]

D
is

p
la

ce
m

en
t 

[m
]

 

 

0 0.2 0.4 0.6 0.8 1

-1

0

1
x 10

-4

Position [m]

D
is

p
la

ce
m

en
t 

[m
]

 

 
All modes

3rd mode

4th mode

All modes

3rd mode

4th mode

0 0.2 0.4 0.6 0.8 1

-1

0
x 10

-9

Damped Position [m]

V
ar

ia
ti

o
n

 i
n

E
n

er
g

y
 [

J]

0 0.2 0.4 0.6 0.8 1

-1

0
x 10

-9

Damped Position [m]

V
ar

ia
ti

o
n

 i
n

E
n

er
g

y
 [

J]

0 0.2 0.4 0.6 0.8 1
-10

0

10

20

Position [m]

In
te

n
si

ty
 [

W
/m

2
]

0 0.2 0.4 0.6 0.8 1
-10

0

10

20

Position [m]

In
te

n
si

ty
 [

W
/m

2
]

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
x 10

-5

Position [m]

D
is

si
p

at
io

n
 p

o
w

er
 [

W
]

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
x 10

-5

Position [m]

D
is

si
p

at
io

n
 p

o
w

er
 [

W
]

 

 
Direct method

Calculate from I



Page 8 of 10  Inter-noise 2014 

Page 8 of 10  Inter-noise 2014 

Therefore, in non-resonance excitation, the position of damping addition cannot be determined 

based on the distribution of dissipation power, which is different from the case of resonance 

excitation. 

 Validation of the Method using Sensitivity Analysis (Non-Resonance Case) 4.3.3
Figure 13 shows the damping addition sensitivity of displacement. Distribution of the sensitivity 

doesn’t correlate to the displacement shape, and it change variously according to damping addition 

position. 

 

Figure 13 – Damping addition sensitivity of displacement, at non-resonance condition 

 

The damping addition sensitivity of the steady-state vibration energy is shown in Fig. 14. There is 

large negative sensitivity at 0.2 m and 0.4 m. This result correlates to the semi-optimum solution. 

 

Figure 14 – Damping addition sensitivity of vibration energy, at non-resonance condition 

 

Therefore, it is validated that the sensitivity method leads the effective posi tion to add damping 

even if the excitation frequency is a non-resonance frequency. 

5. DISCUSSIONS 

We discuss the reason why the distribution of dissipation power is not a valid method at 

non-resonance condition.  

The relationship between damping addition and variation of vibration energy is examined. The 

harmonic translational excitation force with amplitude Fn is applied to node n. The complex 

amplitude of translational displacement of node n can be expressed as follows: 

  sincos jww nn   (19) 

where ϕ is the phase difference between input force and response, and | | denotes the magnitude of 

complex number. 

The period average of the input power caused by the excitation force can be expressed as follows:  
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The period average of dissipation power of the whole structure can be expressed as follows, 

referring to Eq. (8):  
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where u is the complex amplitude of displacement of the structure.  

Because of steady-state vibration, the input power equals to the dissipation power. 
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In resonance condition, one vibration mode is dominant. So the vibration shape keeps similarity, 

not being dependently on damping addition, as shown in Fig. 7. Therefore, the vibration shape of 

damping added structure can be expressed as γu. Eq. (22) can be expressed as follows, using sinϕ=1 

because of resonance: 

   

uCu

uCu





*
2

*
2

22

1

22











nn

nn

wF

wF

 (23) 

where C’ is the damping matrix with additional damping. 

It is obvious that the steady-state vibration energy becomes minimum value when γ is minimum. 

According to Eq. (23), γ becomes minimum value when the right side of the equation, the dissipation 

power, is maximum value. That means adding damping to the position of high dissipation is effective 

to reduce the vibration energy. Therefore, the method of the dissipation power is valid.  

However, in non-resonance condition, the vibration shape does not keep similarity with damping 

addition, as shown in Fig. 13. Moreover, the phase difference ϕ between input force and response 

changes being dependent on damping addition. Therefore vibration cannot be expressed as Eq. (23). 

These are the reason why the effective position to add damping cannot be determined using 

distribution of the dissipation power, in non-resonance condition. 

6. CONCLUSIONS 

We investigated the structure vibration energy, focusing on the energy dissipation caused by 

damping. The main conclusions of this paper are as follows: 

1) In the resonance excitation case, the optimum damping layout for vibration suppression can be 

determined using either method of the dissipation power or the sensitivity. 

2) In the non-resonance excitation case, the optimum damping layout can be determined using 

sensitivity method. On the other hand, there is no correlation between the optimum damping 

layout and the distribution of dissipation power in non-resonance. 

3) We propose the method of damping addition sensitivity of vibration energy for the evaluation 

method which is applicable to either resonance or non-resonance condition. 

REFERENCES 

1. Kido I. Research trend of the modal analysis. Proc Mechanical Engineering Congress (MECJ-10); 5-8 

September 2010; Nagoya, Japan 2010. pp. 353-354 (in Japanese). 

2. Noiseux D U. Measurement of power flow in uniform beams and plates. J Acoust Soc Am. 1970; 

47(1(2)): pp. 238-247. 

3. Pavić G. Measurement of structure borne wave intensity, Part I: Formulation of the methods. J 

SoundVib. 1976; 49(2): pp.221-230. 

4. Nakagawa T, Furusu K, Asai M. Analysis of dissipated energy using vibration intensity. Trans Japan 



Page 10 of 10  Inter-noise 2014 

Page 10 of 10  Inter-noise 2014 

Society of Mechanical Engineers, Series C. 1995; 61(589); pp. 3482-3488 (in Japanese). 

5. Ohishi H, Yamakawa S, Ohno S. Evaluation of the effect of damping treatment using structural intensity 

and strain energy. Proc Dynamic and Design Conference (D&D '98); 17-20 August 1998; Hokkaido, 

Japan 1998. No.116 (in Japanese). 

6. Yamazaki T. Modal expansion of structural intensity for flexural vibration on beams. Trans Japan 

Society of Mechanical Engineers, Series C. 2007; 73(731); pp. 1948-1954 (in Japanese). 


