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ABSTRACT 
Although the equations of flexural wave motion for a thin plate in a vacuum and a fluid are well known, 

it is not easy to find a discussion of energy conservation for plate flexural waves, particularly “leaky” 

waves where a plate and fluid can exchange energy. Nor are formulae easily found for acoustic and flexural 

wave kinetic energy density, potential energy density and energy density flux including the effect of leaky 

waves.  This paper derives formulae for acoustic and flexural energy densities and energy density fluxes, 

and finds the energy conservation equation for the coupled thin plate – fluid system 
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1. INTRODUCTION 
Conservation of energy is sometimes a useful constraint in understanding structural vibration 

problems. For instance, it’s useful to know if radiation from a structure into a fluid can be ignored 

for near field acoustics because the energy density fluxes within the structure are much larger than 

the acoustic energy density flux. Even for the simplest system of flexural waves for an infinite thin 

plate in a fluid, the best known text books do not derive from the wave equation formulae for plate 

wave energy densities and energy density fluxes (1, 2, 3). This paper fills this basic information gap 

by deriving formulae for acoustic and flexural wave energy density and energy density flux, and an 

energy continuity equation for flexural waves coupled to acoustic waves. Regarding the case of a 

leaky wave whereby a flexural wave coexists with an acoustic wave close to a plate, this paper 

discusses energy conservation where for example an acoustic leaky wave travels away from a plate 

but its amplitude decreases exponentially with distance from the plate and increases exponentially 

with distance along the plate.  

2. WAVE ENERGY DENSITY AND ENERGY DENSITY FLUX RELATIONS 
Consider an isolated lossless system (i.e. no external applied forces and no energy dissipation) 

satisfying a wave equation of the form 
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where ),( txu  and ),( txv are complex functions related to the wave amplitude. We seek to identify 

from eqns. (1) the energy density ),( txU and energy density flux ),( tx that satisfies the conservation 

of energy equation  
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Equation (2) simply states that the rate of change in energy density U is due to a gradient in the 

energy density flux . Well known physical concepts allow ),( txU  to be identified as the sum of 

kinetic energy ),( txUK  and potential energy ),( txUP  so that 

)t,x(U)t,x(U)t,x(U PK   (3) 

It is tempting to assume that ),( tx is a sum of a kinetic energy density flux ),( txK and a potential 

energy density flux ),( txP . However identifying formulae for ),( txK and ),( txP unambiguously is 
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not as straightforward as for ),( txUK
and ),( txUP

. Instead the derivations below divides ),( tx into 2 

parts denoted ),( txA and ),( txB that are not unambiguously related to ),( txK and ),( txP , but  

)t,x()t,x()t,x( BA   (4) 

Energy densities and energy density fluxes are real quantities that are quadratic in ),( txu  

and ),( txv . Equation (2) can be constructed from eqn. (1) using only the real parts
2
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t, but often the random phase averaged energy density and energy density flux are also useful. 

An energy conservation equation is derived from the real part of eqn. (1), 
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Multiply the LHS of eqn. (5) by v , the result extracts the spatial gradient and time derivative 

terms from the identities, 
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We then get an energy conservation equation of the form 
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The generalisations of eqns. (1) to (8) to three dimensions are straightforward by replacing x by spatial 

vector r , replacing the one dimension spatial derivative by the vector gradient operator and replacing the 

second order spatial derivative by the Laplacian operator 2 . Also the energy density flux Γ becomes a 

vector. 

The generalised wave equation is  
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The energy conservation eqn. (2) generalises to  
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Equations (3) and (4) are simply extended to functions of vector r . Eqn. (8a) for the kinetic energy density 

is unchanged. The formula (8b) for the energy density flux is replaced by 

uvA
 Γ  (11) 

Similarly the three dimensional extension of eqn. (8c) is 
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3. ACOUSTIC WAVES IN A FLUID 

3.1 Acoustic energy density and energy density flux relations 
The acoustic wave equation is obtained by using in eqn. (9) the relationships 
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),(),( tAptu rr   (13a) 
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where ),( tp r is the complex acoustic wave pressure, and 0c is the speed of sound in the bulk fluid (i.e. a 

large distance from any elastic or other surface). The factor A ensures that U andΓ have units of energy 

density and energy density flux respectively. For a plane wave of frequency )2/( f and fluid 

density 0  , the average energy density flux (Fahy and Giordano Chapter 3, eqn. (3.16) (4)) can be used to 

find 
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From eqns. (8a), (11) and (13a, b) we find spatial and time dependent quantities 
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Equations (12) and (13a, b) lead to 
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Comparing the LHS and RHS of eqn. (16a) implies that PU and BΓ are given by 
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Equation (16c) shows that the total acoustic energy density flux is just AΓΓ   given by eqn. (15b). 

3.2 Plane wave acoustic energy density and energy density flux relations 
Consider a single complex pressure wave  

 aitiiptp   rkr a.exp),( 0  (17) 

where f 2 for frequency f , 
aaa kkk  i is the complex acoustic wavenumber vector, a

3
 is an 

arbitrary phase, and the pressure amplitude 0p is real. A wave with a complex wavenumber does not usually 

occur in isolation but travelling, standing and evanescent waves are needed together to balance energy 

density and energy density flows. It is possible for ak to be complex near a surface such as a plate. 

Substituting eqns. (13a, b) and (17) into the wave eqn. (9), for the case where 0p  is position and time 

independent, we find the constraint on ak ,  

2
0. kaa kk  (18) 

where 00 / ck  . Separate constraints on the real and imaginary parts of eqn. (18) are 
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aa kk  (19b) 

Eqn. (19b) shows that an acoustic wave can have a nonzero imaginary part for the wavenumber (e.g. an 

evanescent wave) provided the real part and imaginary part of the complex wavenumber vectors are 

orthogonal. Eqn. (19a) constrains the relative magnitudes of the real and imaginary parts of the 

wavenumber vector near a surface to conform with the wavenumber in the bulk fluid far from the surface.  

The energy density and energy density flux are time dependent with a fluctuation frequency 2f. The 

energy density and energy density flux mutually change with time and balance out to satisfy eqn. (10). The 

details of the derivations are straightforward using eqns. (17), (15a, b) and (16b). For brevity we use a 
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phase  ta ,r for acoustic energy density and flux variations defined by  
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The time dependent relationships for the energy densities and energy density fluxes for a single complex 

wavenumber plane acoustic wave are
4
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0ak implies a surface acoustic source (or sink) to be present making the potential energy density 

larger than the kinetic energy density by the amount  rSU  (i.e. SKP UUU  ). From (21d) this surface 

source/sink also gives  t,rΓ a wavenumber ak  perpendicular to ak but oscillates in sign, averages to zero 

and hence makes no net contribution to the average energy density flux. All energy densities vary 

exponentially with distance both parallel to and perpendicular to a surface, so if we require 0ak so that 

the acoustic energy density decreases with distance from the surface, then for 0ak of a wave travelling 

away from the surface the energy density increases along the surface in the direction that a wavefront 

propagates, and for 0ak of a wave travelling towards the surface the energy density decreases along the 

surface in the direction that a wavefront propagates. 

4. FLEXURAL WAVES FOR AN INFINITE THIN FLAT PLATE 

4.1 Flexural wave energy density and energy density flux relations 
The wave equation for thin plate flexural waves (Fahy and Gardonio Chapter 1, pp. 26 – 27 (4)) is 

obtained with eqn. (1) by the relations 
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where ),( tx is the complex perpendicular deviation of the plate from the average plane z=0 at position x 

and time t, D is the plate bending stiffness per unit area, M is the mass per unit area of the plate, and B is 

the factor MB /1  that gives correct energy density units. 

The expression (8a) for KU in terms of ),( tx using eqn. (22b) leads to 
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From eqn. (8b) for A in terms of ),( tx and ),( tx using eqns. (22a, b) leads to 
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To facilitate identifying the potential energy density and energy density flux B from eqn. (8c) we use 

the identity 
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Then eqn. (8c) is satisfied by assuming 
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From eqns. (22a, b) and (25a) we find 
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Hence we have 
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Eqn. (26b) is consistent with the static version of the potential energy density stored in a bent thin plate 

derived in text books such as that in Landau and Lifshitz, eqn. (11.6), p. 46 (5). From eqns. (22a, b) and 

(25b) we find 
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4.2 Plane flexural wave energy density and energy density flux relations 
Consider for an infinite flat plate a single complex flexural wave propagating along the x-axis with 

displacement in the +z directions 
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where f 2 for frequency f , xxx kikk  is the complex flexural wavenumber, x is an arbitrary phase, 

and the wave amplitude 0 is real and constant. Note that a single wave with a complex wavenumber does 

not usually occur in isolation owing to the need to conserve energy
5
, but the extension of this theory to 

coherent superpositions of multiple flexural waves is straightforward.  

Substituting eqn. (22a, b) and (27) into the wave eqn. (1), we find 44
fx kk  where DMk f /24  which 

when separated into real and imaginary parts gives 
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The two wave types satisfying (28a, b) are 
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Wave type eqn. (29a) is the unattenuated flexural wave for a plate in a vacuum, and eqn. (29b) is the 

corresponding evanescent flexural wave.  

Similar to eqns. (20a, b) we use flexural wave energy density and flux phases 
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Substituting eqn. (27) into the energy density and energy density flux formulae (23a, b) and (26b, c) 
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 For instance, a harmonic point or line force applied to an infinite plate creates both a travelling wave with a real 

wavenumber and an evanescent wave with an imaginary wavenumber. These two waves are correlated by their 

common driving force. 
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tx xxxxxxxxxxB ,sin3,cos32exp
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
  (30d) 

The total energy density PK UUU  and total energy density flux BA  from eqns. (30a, b, c, d), 

noting that 42
fDkM  , are given by 
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,cos4
2exp

4
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2
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


  (31a) 

   xkkkkDtx xxxx
 2exp),( 2

0
22   (31b) 

Taking the time derivative of  txU ,  and spatial derivative of  t,x , then substituting them into the LHS 

of eqn. (2) we find, 

            
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



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D

x
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t
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xxxxfxxxxx ,cos14,sin42exp
2

),(),(

224222222
0 


 (32) 

For a free, unforced plate eqns. (28a, b) apply and then clearly the RHS of (32) is zero. Also from eqns. 

(28a, b) the total energy density eqn. (31a) and energy density flux eqn. (31b) are time independent for the 

unforced plate. Interestingly eqn. (31b) shows the energy density flux is always time independent for a 

single plane flexural wave satisfying eqn. (27). For the evanescent wave 0,0  xx kk by eqns. (28b) and 

(31b) we find 0),(  tx although ),( txA and ),( txB are nonzero but cancel each other out. It is also 

interesting from eqn. (31b) that ),( tx can be negative even if xk  is positive (i.e. the net energy density flux 

can be in the opposite direction to the wave velocity). 

5. FLEXURAL WAVES FOR AN INFINITE THIN FLAT PLATE IN A FLUID 

5.1 Characteristic equation for plate – fluid dispersion relations 
The equation of motion for a thin plate with one side in a nonviscous fluid and the other in a vacuum is 

derived by adding a time and space dependent acoustic pressure generated by the plate to the LHS of eqn. 

(1) after substituting eqns. (22a, b). This acoustic pressure 0),,,( ztzxp at the plate surface 0z  is 

assumed to be proportional to plate acceleration ),( tx in the +z direction after defining a complex fluid 

mass density aaa MiMM  . Hence we have  

),(),0,( txMtxp a
  (33) 

For the acoustic wave generated by flexural waves eqn. (17) is now replaced by 

 fzxf itizikxikptzxp   exp),,(  (34) 

The plate’s acceleration creates a pressure gradient in the fluid so for an acoustically hard plate surface
6
 

),0,(
),,(

),(
0

0 txpik
z

tzxp
tx z

z

















ξ  (35) 

and hence from eqns. (33) and (35) 

 zz
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a kik
kk

i

k

i
M 




22
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 (36a) 
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 (36b) 
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



 (36c) 

                                                        
6
 This omits compression and shear waves in the plate material that couple to the fluid acoustic and plate flexural 

waves. 
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The plate displacement ),( tx is still given by eqn. (27). 

Combining eqns. (27), (33) and (34) the amplitude of the pressure wave is given by 

0

2
0

0
2 




z

af
k

Mp   (37a) 

and the phase difference between acoustic and flexural waves is 

2


  xf  (37b) 

The characteristic equations for a thin plate in a fluid are derived by adding the fluid contribution (often 

called fluid loading) to the plate mass density and so extending eqns. (28a, b) to 

  






 


M

M
kkkkk a

fxxxx 14 422222  (38a) 

 
M

M
kkkkk a

fxxxx


 4224  (38b) 

The x and z components of the complex acoustic wavenumber are constrained by eqns. (19a, b) and lead to  
222

0
22

zxzx kkkkk   (39a) 

0
zzxx kkkk  (39b) 

Eqns. (39a, b) allow zk  and zk  to be related to xk  and xk  , hence be eliminated from eqns. (38a, b) that can 

then be solved.  

Whereas for a thin plate in a vacuum there are only the two wave mode dispersion relations (29a, b), 

eqns. (38a, b) can be rearranged to a fifth order polynomial equation in 2
xk  suggesting there are five 

different plate – fluid modes with different dispersion relations (Crighton (7)). One well known solution, 

the Stoneley-Scholte wave, is an unattenuated subsonic wave with a pressure decreasing exponentially with 

distance from the plate. Other plate-fluid modes are “leaky” waves with complex wavenumbers implying 

that an infinite plate-fluid system is closed and does not have natural modes corresponding to acoustic far 

field plane waves moving away from or towards the plate. Some plate-fluid modes are “leaky” below the 

coincidence frequency
7
. All five plate – fluid modes contribute to vibration excited by a harmonic point or 

line force (Feit and Lui (8) and Chapman and Sorokin (9)), which then leads to radiation from the region 

near the excitation area. 

5.2 Plate – fluid energy density and energy density flux conservation equation 
Conservation of energy equations for a closed plate – fluid system are derived by extensions to 

equations derived in Section 4. Fluid loading extends eqn. (7) to  
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PBKA  (40) 

where FU is an acoustic energy density in the fluid, related below to aM  , and FW is the plate – fluid 

acoustic energy density transfer rate related below to aM  . Eqn. (40) is derived starting with the fluid loaded 

extensions to eqns. (1) and (5)  
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where (22a, b) still identify ),( txu and ),( txv in term of ),( tx and 

M

M

M

M aa





  ,  (42) 

Multiplying the LHS of eqn. (41) by v and following the same procedure leading to eqn. (7) we find eqn. 

(40) with the extra terms identified as 
2
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Then substituting the plane flexural wave eqn. (27) into eqn. (43a, b) we obtain  

                                                        
7
 The frequency where the flexural wave phase speed equals the speed of sound in the fluid. 



 

Inter-noise 2014  Page 8 of 9 
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Using eqn. (44a, b) in (40) we obtain the plate – fluid extension to eqn. (32) 
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When the characteristic eqns. (38a, b) are satisfied, we have 0),( txWPF  and recover eqn. (40) for a closed 

plate-fluid system conserving energy. If 0),( txWPF , zzxx kkkk  ,,,  are inconsistent with a closed plate-

fluid system and 0),( txWPF  needs to be cancelled by an external energy source to maintain overall 

energy conservation. Adding an external energy contribution ),( txWEF to the energy density transfer rate 

on flexural waves on both sides of (45a) to cancel ),( txWPF gives 
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An example of forced plate – fluid vibration is acoustic absorption and scattering by a plate in a fluid. The 

application of eqns. (45b) and (46) to this problem is in another paper by the author (6). 

6. SUMMARY 
Starting with a linear wave equation eqn. (1) able to represent both fluid and thin plate wave media, 

Sections 2 deduced general formulae for energy density and energy density flux from their conformity with 

the energy conservation eqn. (2). Whereas fundamental mechanics principles readily allow the kinetic and 

potential energy densities KU and PU respectively to be unambiguously identified, two energy density 

fluxes A and B  are needed to describe the propagation of kinetic and potential energy.  

Sections 3 applied the energy density and energy density flux formulae to acoustic fields but taking into 

account the near field effect of a surface resulting in a complex wavenumber vector. A complex 

wavenumber introduces exponential changes in wave amplitude with distance parallel and perpendicular to 

the plane of the surface. The acoustic wave equation requires the real and imaginary parts of the 

wavenumber vector to be orthogonal to each other. In the case of a single plane wave with a complex 

wavenumber, expressions for the kinetic, potential and surface energy densities are derived. The energy 

density flux vector has components parallel to and perpendicular to the wavefront corresponding to the 

imaginary and real parts of the wavenumber vector respectively. 

Section 4 derives formulae for the energy density and energy density flux for flexural waves of an 

infinite thin, flat plate in a vacuum. The net energy density flux for a single flexural plane wave is time 

independent in contrast to the flux of an acoustic wave which has a time dependent part with frequency f2 . 

Also unlike an acoustic wave, a complex wavenumber flexural wave can have an energy density flux in the 

opposite direction to the wave propagating direction defined by the real part of the wavenumber. 

Section 5 combines the theory of Sections 3 and 4 to derive wave dispersion and energy conservation 

relations for an infinite thin flat plate – fluid system coupling acoustic and flexural waves. Whereas a plate 

in a vacuum has only two natural wave modes (propagating and evanescent waves), a plate in a fluid has 

five natural wave modes. The energy conservation equation for the plate-fluid system is extended in 

Section 5.2 to include external forces such as acoustic excitation by a plane wave treated in another paper 

by the author (6).  
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