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ABSTRACT 
One problem with speech recognition is a low performance in noisy environments because it is easily 
influenced by aerial in air. Although the sound quality of body-conducted speech (BCS) and regular speech 
are different, with BCS recognition, it is possible to recognize an utterance in noisy environments with a 
rating of 98 dB sound pressure level (SPL) in our previous study. In this study, we investigate how to 
improve BCS recognition performance using model re-estimation methods of ML and MAP. An acoustic 
model uses parameters such as mean vector, covariance matrix, weight, and transition probability. 
Recognition performance is improved by model re-estimation of speech and BCS using maximum likelihood 
and maximum a posteriori methods, respectively. We confirmed that improvements in recognition 
performance are achieved for practical through the re-estimation of the covariance matrix and mean vector. 
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1. Introduction 
Conversation is one of the most important communication methods for human beings; however, 

noises in the air act as a disturbing factor in this type of communication. Approaches to robust 
communication methods and instruments are widely proposed and investigated in the research fields 
of speech signal processing and human interface. In speech signal processing, the robust 
communication is one of the most significant research topics because speech recognition does not 
achieve effective performance for practical use. 

The approaches for measuring speech in a noisy environment are classified into physical and 
mathematical approaches. Physical approaches are signal-measuring methods employ physical 
methods that use special microphones such as microphone arrays and bone-conducted speech 
microphones, while mathematical approaches include noise reduction methods and sound quality 
improvement methods [1–4]. Microphone arrays work correctly when there is an approximately 0 to 
-5 dB signal-to-noise ratio (SNR) in the environment; however, microphone arrays do not work in 
noise-heavy environments [4]. Conventional mathematical approaches do not achieve a sufficient 
level of performance in noisy environments because several information and speech samples are 
required for estimating and clearing speech and/or suppressing noise. Using this research as 
background information, the authors proposed and discussed body-conducted speech (BCS), which 
is conducted on skin and bone in a human being. In general, speech is easily influenced by noise in 
the air, however BCS can measure by accelerometer in a 98-dB SPL-noise (-20 dB SNR) 
environment. Compared to conventional speech recognition tasks in the noise environments of 
AURORA and CENSREC [5,6], this environment has one of the heaviest task conditions. An 
advantage of BCS is its robustness for noise because BCS does not affect by aerial noise ; a 
disadvantage is its low quality sound at 2 kHz or higher when compared to the regular speech. This 
disadvantage decreases the performance of speech recognition when using BCS as an input signal, 
because feature parameters such as cestrum coefficients are different between regular speech and 
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BCS. To achieve a sufficiently acceptable level of performance for practical use, users have to 
improve the sound quality and/or re-estimate the parameters of the acoustic model in speech 
recognition. Previously, authors investigated both approaches and studied improvements in sound 
quality and re-estimation of the mean vector in the acoustic model [7]. This paper shows 
performance improvement using re-estimations of parameters in an acoustic model. The parameters 
include mean vectors, covariance matrix, transition probability, and weight. 

2. Speech and BCS 
Speech is an air-conducted sound and is easily influenced by surrounding noise. By contrast, 

since BCS is a solid, propagated sound, and it is difficult for noise to influence it. Figs. 1 and 2 
represent the utterance of a local Japanese place called “Asashi” by a twenty-year-old male. The 
utterance was chosen from the JEIDA-100-local-place-name database [8]. Table 1 shows the 
recording environments. Signals were recorded at 16 kHz with 16 bits. Speech was measured by the 
microphone, which was positioned at a distance of 30 cm from the mouth to lip, is microphone 
position for practical use and BCS was measured using an accelerometer placed at the upper lip. The 
distance for speech is assumed to be that of a conventional speech interface such as a car navigation 
system. The measuring position for BCS has already discussed and proved as suitable location 
compared with feature parameters between speech and BCS at previous research [7]. However, BCS 
does not measure 2 kHz or more of higher frequency components, conventional speech recognition 
does not work for practical use because there are difference quality of sound and feature parameters. 

 

  
            Figure 1. Speech.                        Figure 2. BCS. 
 

Table 1. Recording environments. 

Device name Model name 

Recorder TEAC RD-200T 

Microphone Ono Sokki MI-1431 

Microphone amplifier Ono Sokki SR-2200 

Microphone position 30 cm (Between mouth and microphone) 

Accelerator Ono Sokki NP-2110 

Accelerator amplifier Ono Sokki PS-602 

Accelerator position Upper lip 

3. Experiment 
To improve the performance of speech recognition, re-estimations of the acoustic models are 

experimented with and discussed. The parameters in the model should be re-estimated for speech 
into for BCS, because speech recognition estimates result candidates of words chosen by matched 
with feature parameters of sound and cestrum parameters in the models. Model parameters include 
feature vectors, covariance matrix, weight, and transition probability, thus the authors experimented 
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and discussed that the recognition performances should be evaluated with model re-estimation or not 
here. 

3.1 Experimental setup 
Table 2 shows the experimental conditions for the isolated word recognition. The experiment 

used two databases: 20021213 and 20030228. In both databases, the speaker uttered hundreds of 
local place names in a quiet room. The signals were recorded using a microphone and an 
accelerometer. Database 20021213 is composed of 900 words that three male speakers uttered during 
three trials, and database 20030228 is composed of 600 words uttered by two male speakers during 
three trials. 

A speech-recognition decoder, Julius 4.2 [9], is used for large-vocabulary, continuous-speech 
recognition, including isolated word recognition, and was used in this experiment. The experiments 
were performed under two conditions: open and close test. The re-estimations of acoustic models 
were only used for database 20021213, and were then re-estimated by HTK [10]. However, our 
recognition experiments used both databases. Database 20021213 was used for the closed test, and 
database 20030228 was used for the open test. The dictionary for recognition is a 
100-local-place-name dictionary from JEIDA, which is gathered 100 local place name of Japan when 
conditioned balanced in mora and syllable of appearance ratio. In addition, the acoustic model, uses 
a tri-phone model as the phoneme and/or syllable, was represented as a hidden Markov model 
(HMM), which uses the following parameters: mean vectors, diagonal covariance matrices, mixture 
weight, and the transition probabilities of a particular state. The re-estimations of parameters in 
HMM are calculated by two algorithms: the maximum likelihood estimation method (ML) and the 
maximum a posteriori probability estimation method (MAP) [11].  

 
Table 2. Experimental conditions. 

Speaker 20021213: 3 males, 20030228: 3 males 

Data set 100 words × 3 set/person 

Vocabulary JEIDA 100 local place names 

Decoder Julius 4.2 

Acoustic model Gender-dependent tri-phone 

Model condition 16 mix, clustered 3,000 states 

Parameter MFCC(12) + ∆MFCC(12) + ∆POW(1) 

Training for baseline model 20,000 samples of speech with HTK 2.0 

Model re-estimation condition 600 samples of speech or BCS, 20021213 with HTK 3.4.1 
 

3.2 Experimental results 
Table 3 shows the recognition results of model re-estimations. Baselines are set using 

gender-dependent speech models for unspecified speakers without re-estimation. The other data used 
are results of acoustic models with re-estimations. From the results, the effectiveness of model 
re-estimations for both sounds at mean vectors, mixture weights, and diagonal covariance matrices 
were confirmed. On the other hand, this did not improve the conditions of transition probability. 
Transition probability refers to the staying probability of each state of HMM. However, the time 
duration and its boundary at each state of HMM are always the same time and length because both 
sounds are synchronized. Re-estimated prompters are almost the same; thus, the efficiency of 
re-estimation of the transition probability was not obtained. 

4. Conclusions and future works 
This paper investigated and experimented with improvements to BCS recognition using 

conventional speech recognition, evaluating recognition performance using model re-estimations. It 
was confirmed that the recognition performances significantly improved after the re-estimation of 
the mean vector, mixture weights, and covariance matrices, using two re-estimation algorithms, ML 
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Correct Diff. Correct Diff. Correct Diff. Correct Diff.
94.83 +0.00 54.33 +0.00 96.11 +0.00 46.56 +0.00

Mean 99.82 +4.99 99.17 +44.83 99.81 +3.70 99.15 +52.59
Variance 100.00 +5.17 99.72 +45.39 99.89 +3.78 99.52 +52.96

Transition 94.67 -0.17 55.61 +1.28 96.56 +0.44 46.81 +0.26
Weight 96.39 +1.56 73.39 +19.06 97.67 +1.56 67.30 +20.74

All 100.00 +5.17 100.00 +45.67 99.96 +3.85 100.00 +53.44
Mean 99.11 +4.28 94.22 +39.89 99.59 +3.48 94.48 +47.93

Variance 99.00 +4.17 91.28 +36.94 99.74 +3.63 90.41 +43.85
Transition 94.83 +0.00 54.33 +0.00 96.11 +0.00 46.56 +0.00

Weight 95.83 +1.00 60.00 +5.67 97.37 +1.26 54.52 +7.96
All 94.83 +0.00 54.33 +0.00 96.11 +0.00 46.56 +0.00

MAP

ML

Baseline

20021213 20030228
Speech BCS Speech BCS

and MAP. The level of performance was sufficiently improved to allow the practical application of 
speech recognition. 

In the future, the authors plan to carry out these performance improvements using model 
re-estimations with sound quality improvement method, combined with a differential acceleration 
and noise reduction method [4]. 

 
Table 3. Recognition results of model re-estimations. 
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