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ABSTRACT

The aim of this study is to develop a simple phenomenologiwael for the elastic moduli of a composite
material formed by localized inclusions embedded in an elasétrix. It is assumed that the material can
be characterised by only two aggregated parameters, viz., vdhacteon of inclusions and their resonance
frequency within the elastic matrix. The values of these twomatars are assumed to be given (i.e. from
experimental measurements) or deduced from other models (alsenped in the paper). The shear wave
velocity in the elastic matrix is assumed to be much smallan tthe velocity of longitudinal waves. A
simple analytical expression for the effective longitudinalve velocity that is uniformly valid for the entire
frequency domain is derived (including proximity to the resondnequency of inclusions) and validated
with some paradigmatic results of the mean-field theories.
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1. INTRODUCTION

Elastic materials with micro-homogeneous structure have béeatig ever-increasing interest in var-
ious areas of scientific research and practical applicationstidtive examples include phononic crystals,
acoustic cloaks, sound absorbers, and aircraft and ship stru¢i@s There is an upsurge of interest in
calculating (and predicting) the properties of such materiahés | due to the continuous requirement to
engineer new materials targeted at specific applicationsefisaw to reduce the burden associated with the
costly experimental programs.

There is a wealth of analytical and numerical methods for catmg the elastic properties of composite
materials and there is a vast amount of literature devoted tauthje (see Refs1f11] and the references
therein). At sufficiently low frequencies (the quasi-static I)nihe so-called Effective Medium Approxima-
tion (EMA) usually holds. Under this approximation the comifmsnaterial can be modelled as a homo-
geneous visco-elastic material with some effective elastidutidhat are determined by only the volume
fraction of inclusions in the composite. The analytical dggoyn becomes more challenging near the fre-
guencies of internal resonances of the material (natural frecqeen€inclusions) where the composites can
exhibit the most interesting and nontrivial elastic propertieg$act, in this region the elastic moduli usually
have the typical ‘resonant’ singularities, where the simple Efddels become inaccurate.

To reach acceptable agreement with experimental observatioresadvanced models can be employed
that take into account other physical effects that becomeitapt near resonance frequencies (such as reso-
nance mode coupling and switching, multi-scattering, frequelependent attenuation; see, €.8,8[9,11]).
The advanced models can reach an acceptable level of fidelityrifortunately they usually become ana-
Iytically intractable. A numerical treatment of advanced medm=n produce very accurate outcomes, but
requires an extensive domain knowledge and significant catipoal effort to reveal any aggregated trends
emerging in the multi-parameter space describing the congpf@}itThe inaccuracy of the simplistic EMA
approach and the technical challenges associated withcafiph of the advanced numerical models near
resonant frequencies necessitates development of interoeptual models which are much easier to use,
while still being adequate to capture the complex phenonogiyoin composite materials near resonances.
Being properly validated such models would allow a prompt assest and interpretation of new trends in
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experimental data as well as rapid evaluation of ‘what-if’ scesan prototyping studies.

The aim of this paper is to present a simple, yet scientifigalyrous, model of a composite material with
localized inclusions which is characterized by only two aggted parameters, namely the volume fraction
of inclusionsa and the resonance frequenoy of an individual inclusion. The values of these parameters are
assumed to be given (i.e. from experimental measurement) bueadeduced from other theoretical models,
as described in the following sections.

2. THEORETICAL FRAMEWORK

2.1 Model for elastic wave propagation

The propagation of the longitudinal waves in the medium witorant scatterers (inclusions) can be
written in the form of a single equatiorL?)
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wherec is the velocity of longitudinal waves in the elastic matrixtbé compositeqy is the resonance
frequency of inclusions, anfl is a concentration parameter proportional to the concentrafioclusions.
At this stagewy and are simply two independent parameters of the model, but sontgtianbmodels for
both parameters, connecting them directly to the volume fraciamclusions, will be presented below. For
B =0 Eqg. @) reduces to the conventional wave equation.

Substitutingu ~ exp(icwt) in Eq. (1) and explicitly evaluating the time derivatives in termscofwhile
leaving the spatial derivative unevaluated leads to
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which is the conventional Helmholtz equation for longituediwvave propagation

or

:XZZu+k2u:O, k= w)/cf, (2)
wherecy is the effective, and dispersive, velocity of longitudinaMes in the medium with inclusions,
e B\
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The effective Lamé elastic modwiandy of the material with inclusions are related to the effective oitkes
of longitudinal and shear waves, andcg, through the standard expressions for isotropic materials

o=+ (A+2u)/pe ci=+/u/p, 4)

wherep€ is the effective density of the material. Moduluss the shear modulus. The bulk modulus of the
material isK = A + 2u/3 which differs from the compressional (or longitudinal) modulus- 2. Since
the proposed theory is restricted to rubber-like materials it israed thatcs < ¢ (or 4 < A). Dissipation
processes are equivalent to adding an imaginary part to the wian, and through equatio@sind4 this
correspond to the elastic moduli being complex.

The asymptotic behavior of EcB)is straightforward. Asv — 0,cf — ¢ /(1+ B)Y? < ¢, and agw — «,
¢ — ¢. More accurate analysis reveals that B).dorresponds to two dispersion modes (branches) with the
different limiting cases. Example dispersion curves= w(k) versusk = w/cf, directly from Eq. 8), are
presented in Fig. 1 fg8 = 1.5. They axis is presented in non-dimensional foeiay vske /wy. Fig. 1(a) is
the zero-attenuation case. The plotin Fig. 1(b) includes adition by makinguy complex by multiplying by
1+0.1i (in which casaw is normalised by the real part af), andk in the figures represents the real part). The
introduction of dissipation leads to a reconnection of the lbremches of the dispersion curve, resulting in
disappearance of a ‘forbidden’ frequency gap. This effect has besiopsly reportedd]. It will be shown
later that the resonance frequency of a void is directly relatedeacomplex shear modulus of the elastic
matrix and the radius of the void.
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Figure 1 — Dispersion relatiow(k) for Eq. 3): (a) case of two independent modes; (b) merging two modes
caused by dissipation in the material.

2.2 Model for concentration parameter 3

Following Ostrovsky 13] one can consider a 1D system with the axminting in the direction of wave
propagation. Assume s particle displacement in thedirection andv is the deviation of a single inclusion
volume from its equilibrium value. The set of coupled equatiomssists of the equation for the longitudinal
waves

0? 17}
WU = (720227 )
whereoy is the component of the stress tensor, and the equation fostiléations of the inclusions is
[92
SVt WiV = 4Tac? 0, (6)

wherewy is the resonance frequency of the inclusion.
For the sake of simplicity only the case of void inclusionsaasidered, where the density of the inclusions

is much less than the densjyof the host matrix. In such a casg, = (A +2u)% — (A +2u)nv, and

au
O = p&? <dz—nv>, W
wheren is the number of voids per unit volume, so that the volume foaatif voids relative to the whole is
a = (4/3)mgn, (8)

which can be connected with the parameiexs follows.
A dispersion relation for this model follows from an assumed sofutf the formu,v ~ exp(icwt — ikx)

in Eq. (7), giving

w* — (QF+ k) w” + Wi ek = 0, 9)
2
whereQZ = wf + 4mac?n = «f <1+ 2a (C—C'S) ) One can writ&(w) from Eq. @) as
2 2
20,y W (Qo/ap)*—1
k(w) = 2 <l+l—(w/wo)2 : (10)
By comparing the expression fof = w/k(w) with Eq. @), the following formula for the aggregated
paramete)3 can be derived:
3 A+2u 3 (A
i .

assumingu < A.

The aggregated paramejfgdescribes the relative effects of the elastic properties of teeraterial 4
andu) and the volume fraction of inclusions). This enables informative comments and consistent design
of new elastic materials that provide a desirable value for tigeeamted parameté (perhaps derived from
an optimisation study).
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2.3 Models for resonant frequency wy

For a number of paradigmatic shapes the resonance frequancan be calculated analytically and
employed in Egs.3). For instance, for a spherical inclusion of radigsn a rubber-like material the lowest
resonance frequency can be estimated by employing analytealtsdor the response scattering from a
single inclusion §, 14]

1/3

Cs 4

w-a7 -8 (5) o (12)

wherevp = (411/3)r3 is the volume of the cavity. Paramet@ris approximately 2 for a void inclusiori§).
For the case of a hard spherical inclusion one can use the for)dia, 15|

3
V2pi/p)+1

where p; is the mass density of the inclusions apds the density of the matrix. For the most realistic
compositego; /p is generally less than 10 and this leads to a reasonably narrow fanthe parametef;
to capture a variety of the elastic properties of the materialsate of interest for practical applications.
Typically, 0.5 < & <0.7.

To evaluate other inclusion shapes a phenomenological agpriaitially proposed in Refs4[16] can
be used. According to this approach the resonance frequency dfemosial cavity can be estimated by
introducing a shape factdp:

{1= (13)

wf = &2, (14)

whereay, is the resonance frequency of a spherical inclusion of the satamew, = (471/3)r3 ~ (411/3)a’c,
and a and c are the main axes of the spheroidal inclusion. The corresporeffiegtive radius isrg =
(ca?)1/3 = ae!/3, wheree = a/c is the eccentricity of the spheroid. The simplest formula for thefe’
factor can be conjectured from some analytical argumdiisand is

—, e>1, (15)

and
&=(1/k)InZ, e<1, (16)

whereZ = 2e+2/e andk = In(4). For a spherical inclusioe= 1 andé, = 1. The limite — 0 ore — o
corresponds to the extreme cases of an oblate or prolate sptrespdctively.

A very slender inclusion can be modeled as a cylinder. At thi the analytical results for the resonance
scattering in the cylindrical geometrg 3] can be employed. For a cylindrical void of radiusEqg. (12) can
still be used but with an additional fact® = 1/In(c /cs) < 1. For the case of a conventional polymer matrix
this implies that the shape paramefgican take rather lower values (down&p~ 0.3).

If the volume fraction of inclusions is not very low, then the effet multiple scattering (or coherence
of sound waves scattered by different inclusions) may becorperiant. In this case the scatterers can no
longer be considered independent and the proposed frameworkbeusfined. Formally, the resonance
frequencyay then becomes a function of the volume fractmnTo describe this effect the analytical models
of Refs. [7,9] are employed, where the resonance frequency of a system ofddentilusions can be written
in the scaling form

w = &z, (17)

wherewy is the resonance frequency of a single inclusion in an infinitdioma (i.e., given by Eqsi@), (14)),
and factoréz can be estimated from the explicit relationship:

&L=22, 18
_ 1+ (2/3)a5/3
s \/1—(3/2)011/3+(3/2)a5/3_az’ (19)
_ |2p/p)+1
PP =\ 2p/p) 4 ¢ (20)

with { = (1+2a)/(1— o). One can see that for low concentrations of inclusians{0), & — 1 and{ — 1,
andé — 1, so this expression is consistent with B@)(for sparse composites.
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To summarise, the main outcome of the proposed models is thaathral frequencies of an inclusion in a
rubber-like material can be approximated in the simple scalingfa§ = & (cs/ro), whererg is the effective
radius, and€ = &1&2¢&3, with factorséy, &2, &3 determined by the density, shape and relative proximity of
inclusions as defined above. This form provides a simple, yetaigy framework for prediction and control
of the resonance properties of composite materials with irmhgsi

3. NUMERICAL RESULTS

Egs. @), (11), (12) and (L4)—(20) completely characterise the elastic properties (effectiveielamduli)
of the composite material with resonant inclusions. At lowaaniration of inclusions the volume fraction
a does not enter the expression for the parametgrso the parameters (or 3) and wy can be varied
independently. At higher concentrations the correctiorudggiven by Eq. 17) needs to be applied.

As the first step, the scaling factofs, &, and &z in Egs.(2), (14), and (7) are validated. The formula
(12) for a spherical void is well-known and is the material of textke{, 14]. The expressionl2) has been
previously used in numerous studidg]. The expression for the shape paramétetEqgs. (L5) and (L6) can
be validated by comparison with numerical calculations forespidal voids in rubber-like materiald,[16].
Fig. 2(a) compares the calculated resonance frequencies with thetiealbpproximation of Eqs.16) and
(16)) as a function of eccentricitg. It can be seen that the simple analytical approximation pesvadgood
fit.

Factor EZ

0 10 20 30 0O 01 02 03 04 05 06
Eccentricity of void e Volume fraction a
(a) (b)
Figure 2 — Factors for estimation of resonance frequency: (a) Shape,fEq.14), for a spheroidal inclusion;
(b) Scaling factor, Eq18), for a material with spherical voids embedded in the host rubkemhatrix as a
function of the inclusion volume fraction of. In both figures, markers correspond to numerical resd/i6]
or experimental datar[ 9]

Next, Eq. (L8) for the concentration correction for the resonant scattering lmmposite with inclusions
is validated. In Fig2(b) measurements of the resonance frequencies of a compositeéafrate compared
with the results of the equation, presented as a function oferdrettion. The markers show data for steel
inclusions embedded in a host rubber-like material wjte- 1500 m/s ands = 200 m/s [7]. Although the
agreement for the scaling factor in the figure is not as good akémtiape factor, these results, and oth@rs [
clearly show the general trend of an increase in resonance frequéthcgn increase in the volume fraction
of inclusions (for a given inclusion size). This trend is suppbiig the analytical model of Eq18) for a
broad range of parameters. For low volume concentration the asyergf Eq. (8) is & ~ 1+ (3/4)a/3.

As a demonstration of the proposed approach the following ogdition problem is considered. More
specifically, the optimal performance of a vibro-acoustic panehéal by a visco-elastic matrix with resonant
inclusions (voids) is determined. The performance of the pamekeaily be defined in terms of parameters
of the proposed framework (such @sandwy, or a andrp) that can be tuned.

An elastic planar panel of fixed thickness in water is congideand the reflection and transmission of
sound at normal incidence is computed using plane-wave refitéctinsmission theory (see, for examd@{

19] and the physical properties shown in TaldleThe theory is based on plane waves incident on finite
thickness layers of infinite lateral extent. The amplitude @i€oted and transmitted plane waves is obtained
mathematically by using the equations of continuity of puessshear stress and particle velocity across
the boundaries of the layers at arbitrary angles of incidence.drextample here at normal incidence the
shear modulus of the voided panel does not affect the energgtieft or transmission coefficierfand T
(although the shear modulus of the mattbes affect the compressional modulast 2u through Egs. )
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Table 1 — Material Properties for Figgand4

Material Parameter Value Units
Water Density 1000 kgm®
Sound speed 1500 M
Elastic Material Density 1300 kan®
Compressional modulus+2u  5x10° Pa
Loss factom 0.001 —
Shear modulugt 3x10° Pa
Loss factom 0.1 —
Voided panel Thickneds 0.05 m
Fig. 3 void radiusrg 0.005 m

Fig. 3 void volume fractiono 0.01

and (L1)). Furthermore, with only one layer in the panel and the same mrediueither side of the panel the
equations can be written analytically. For example, for a pafigicknessh [20],

T= 4 , (1)
4cogkh (PwQN pec'e)zsinzkh
0%+ acw

wherep,, andc,, and the density and sound speed in water, respectively, avdavenumbekis as in Eq. 2).
With damping included, ag* = u(1+in), etc. (see Tabl&), bothk andcy are complex.

Fig. 3 shows the results using the simplified effective elastic pragsedgiven by Egs.3), (11) and (L2
compared with results of the well established theories of Gauh@1] and Chaban]5]. Fig. 3(a) shows
the energy reflectiolR and transmissiofM coefficients for the panel, and Fig(b) shows the fraction of
energy absorbed by the panel{R— T) according to these three theories. The results of the simplified
model and 15] are almost indistinguishable, and good agreement is olatdoreall models. The effect of
void shape and high volume concentration is not includederctimparison as model2]] and [15] do not
include this effect. The resonanag around 3 kHz can be clearly seen.

The high frequency absorption tail of Gaunaurd’s theory in Bigs due to the inclusion of the direct
scattering from the voids themselves, whereas the Chaban aplifi@ditheories only include the loss from
the material resonance due to those voids. If the loss factorgate sero in the modelling then the sound
absorption becomes zero for these two theories, unlike the @editteeory. The effect of the absorption tail
is not insignificant above the resonance frequency, as can hérsthee blue curve of Figd(a).
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Figure 3 — Comparison of the simplified model, E@, (11) and (L2) with established theorie&]], labelled
‘Gau’, and [L5], ‘Cha’: (a) sound reflectiolR and transmissiofi ; (b) sound absorption (2 R—T).
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Figure 4 — Mean sound absorption over 1-10 kHz as a function ahwelfractiona and radius of inclusion
ro: (&) simplified model, Eqs 3], (11) and (2); (b) established theor2[].

Fig. 4 shows a measure of the effect of varying void radius and volumedrech the energy absorbed. In
this case the measure chosen is the mean energy absorptifinieoebver the frequency range from 1-10
kHz. Fig. 4(a) uses the simplified model and F#{b) uses the theory of Gaunargl]. Calculations have
not been shown for the theory of Chabdb][as it agrees closely with the simplified model. The advanced
models and the simplified model are in good quantitative agea&nA global maximum in sound absorption
of 0.36 is observed at = 0.01-002, ro = 1.5 mm for both models, although the peak is broad. Different
results would be obtained depending on the measure chosentifmisgiion.

4. CONCLUDING REMARKS

The two-parameter model presented above can enable a sighdicgatification in modelling of compos-
ite materials with resonant inclusions. It formulates the effectiiastic properties of the materials in terms
of only two aggregated parameters (volume fraction of inclusionsthe resonance frequency of an indi-
vidual inclusion) that realistically describe the elasticpmuies of the composite if the base material sound
speed is known. The specific values of these parameters canistateal to the particular structure of the
material in many different ways, such as by changing volume &ractize, shape and density of inclusions.
Importantly, the acoustic properties of the composite shoukirbéar as long as the value of two aggregated
parameters remain the same. Furthermore, the resonance frequeheyiéltisions can be related to the
shear modulus of the base material if it is known. This approaai help to establish a feasible strategy for
consistent assessment of candidate materials and insigh#fiulation studies, especially when the process of
sound—material interaction exhibits complex wave phenotogndqsee Fig3).

The proposed framework can easily be integrated in any 1D modéiéasdund wave propagation (see
Eq.@)). This enables straightforward numerical calculations of thecafie elastic moduli of elastic struc-
tures (laminates) consisting of a number of layers with resoinghisions. These calculations may provide
revealing guidance at the design stage of vibro-elastic panelseduce the experimental burden associated
with exploring their optimal configurations.
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