
A simple model of effective elastic properties of materials with
inclusions

Alex SKVORTSOV1; Ian MACGILLIVRAY 2

Maritime Division, Defence Science and Technology Organisation,

506 Lorimer St, Fishermans Bend Vic 3207, Australia

ABSTRACT
The aim of this study is to develop a simple phenomenologicalmodel for the elastic moduli of a composite
material formed by localized inclusions embedded in an elasticmatrix. It is assumed that the material can
be characterised by only two aggregated parameters, viz., volumefraction of inclusions and their resonance
frequency within the elastic matrix. The values of these two parameters are assumed to be given (i.e. from
experimental measurements) or deduced from other models (also presented in the paper). The shear wave
velocity in the elastic matrix is assumed to be much smaller than the velocity of longitudinal waves. A
simple analytical expression for the effective longitudinal wave velocity that is uniformly valid for the entire
frequency domain is derived (including proximity to the resonancefrequency of inclusions) and validated
with some paradigmatic results of the mean-field theories.
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1. INTRODUCTION
Elastic materials with micro-homogeneous structure have been attracting ever-increasing interest in var-

ious areas of scientific research and practical applications. Illustrative examples include phononic crystals,
acoustic cloaks, sound absorbers, and aircraft and ship structures[1–3]. There is an upsurge of interest in
calculating (and predicting) the properties of such materials. This is due to the continuous requirement to
engineer new materials targeted at specific applications as well as to reduce the burden associated with the
costly experimental programs.

There is a wealth of analytical and numerical methods for calculating the elastic properties of composite
materials and there is a vast amount of literature devoted to the subject (see Refs. [1–11] and the references
therein). At sufficiently low frequencies (the quasi-static limit), the so-called Effective Medium Approxima-
tion (EMA) usually holds. Under this approximation the composite material can be modelled as a homo-
geneous visco-elastic material with some effective elastic moduli that are determined by only the volume
fraction of inclusions in the composite. The analytical description becomes more challenging near the fre-
quencies of internal resonances of the material (natural frequencies of inclusions) where the composites can
exhibit the most interesting and nontrivial elastic properties. In fact, in this region the elastic moduli usually
have the typical ‘resonant’ singularities, where the simple EMAmodels become inaccurate.

To reach acceptable agreement with experimental observations more advanced models can be employed
that take into account other physical effects that become important near resonance frequencies (such as reso-
nance mode coupling and switching, multi-scattering, frequency-dependent attenuation; see, e.g., [2,8,9,11]).
The advanced models can reach an acceptable level of fidelity but unfortunately they usually become ana-
lytically intractable. A numerical treatment of advanced models can produce very accurate outcomes, but
requires an extensive domain knowledge and significant computational effort to reveal any aggregated trends
emerging in the multi-parameter space describing the composite [2]. The inaccuracy of the simplistic EMA
approach and the technical challenges associated with application of the advanced numerical models near
resonant frequencies necessitates development of interimconceptual models which are much easier to use,
while still being adequate to capture the complex phenomenology in composite materials near resonances.
Being properly validated such models would allow a prompt assessment and interpretation of new trends in
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experimental data as well as rapid evaluation of ‘what-if’ scenarios in prototyping studies.
The aim of this paper is to present a simple, yet scientificallyrigorous, model of a composite material with

localized inclusions which is characterized by only two aggregated parameters, namely the volume fraction
of inclusionsα and the resonance frequencyω0 of an individual inclusion. The values of these parameters are
assumed to be given (i.e. from experimental measurement) but can be deduced from other theoretical models,
as described in the following sections.

2. THEORETICAL FRAMEWORK
2.1 Model for elastic wave propagation

The propagation of the longitudinal waves in the medium with resonant scatterers (inclusions) can be
written in the form of a single equation [12]
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wherecl is the velocity of longitudinal waves in the elastic matrix ofthe composite,ω0 is the resonance
frequency of inclusions, andβ is a concentration parameter proportional to the concentration of inclusions.
At this stageω0 andβ are simply two independent parameters of the model, but some analytical models for
both parameters, connecting them directly to the volume fractionof inclusions, will be presented below. For
β = 0 Eq. (1) reduces to the conventional wave equation.

Substitutingu ∼ exp(iωt) in Eq. (1) and explicitly evaluating the time derivatives in terms ofω while
leaving the spatial derivative unevaluated leads to
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which is the conventional Helmholtz equation for longitudinal wave propagation

d2

dx2 u+ k2u = 0, k = ω/ce
l , (2)

wherece
l is the effective, and dispersive, velocity of longitudinal waves in the medium with inclusions,

ce
l = cl

(

1+
β

1− (ω/ω0)2

)−1/2

. (3)

The effective Lamé elastic moduliλ andµ of the material with inclusions are related to the effective velocities
of longitudinal and shear waves,ce

l andce
s , through the standard expressions for isotropic materials

ce
l =

√

(λ +2µ)/ρe, ce
s =

√

µ/ρe, (4)

whereρe is the effective density of the material. Modulusµ is the shear modulus. The bulk modulus of the
material isK = λ + 2µ/3 which differs from the compressional (or longitudinal) modulusλ + 2µ. Since
the proposed theory is restricted to rubber-like materials it is assumed thatcs ≪ cl (or µ ≪ λ ). Dissipation
processes are equivalent to adding an imaginary part to the wavenumber, and through equations2 and4 this
correspond to the elastic moduli being complex.

The asymptotic behavior of Eq. (3) is straightforward. Asω → 0, ce
l → cl/(1+β )1/2 ≤ cl , and asω → ∞,

ce
l → cl . More accurate analysis reveals that Eq. (3) corresponds to two dispersion modes (branches) with the

different limiting cases. Example dispersion curves,ω = ω(k) versusk = ω/ce
l , directly from Eq. (3), are

presented in Fig. 1 forβ = 1.5. They axis is presented in non-dimensional formω/ω0 vskcl/ω0. Fig. 1(a) is
the zero-attenuation case. The plot in Fig. 1(b) includes attenuation by makingω0 complex by multiplying by
1+0.1i (in which caseω is normalised by the real part ofω0, andk in the figures represents the real part). The
introduction of dissipation leads to a reconnection of the twobranches of the dispersion curve, resulting in
disappearance of a ‘forbidden’ frequency gap. This effect has been previously reported [8]. It will be shown
later that the resonance frequency of a void is directly related tothe complex shear modulus of the elastic
matrix and the radius of the void.
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Figure 1 – Dispersion relationω(k) for Eq. (3): (a) case of two independent modes; (b) merging two modes
caused by dissipation in the material.

2.2 Model for concentration parameter β
Following Ostrovsky [13] one can consider a 1D system with the axisz pointing in the direction of wave

propagation. Assumeu is particle displacement in thez direction andv is the deviation of a single inclusion
volume from its equilibrium value. The set of coupled equationsconsists of the equation for the longitudinal
waves

∂ 2

∂ t2 u =
∂
∂ z

σzz, (5)

whereσzz is the component of the stress tensor, and the equation for the oscillations of the inclusions is

∂ 2

∂ t2 v+ω2
0v = 4πac2

l σzz, (6)

whereω0 is the resonance frequency of the inclusion.
For the sake of simplicity only the case of void inclusions isconsidered, where the density of the inclusions

is much less than the densityρ of the host matrix. In such a caseσzz = (λ +2µ) ∂u
∂ z − (λ +2µ)nv, and

σzz = ρc2
l

(

∂u
∂ z

−nv

)

, (7)

wheren is the number of voids per unit volume, so that the volume fraction of voids relative to the whole is

α = (4/3)πr3
0n, (8)

which can be connected with the parameterβ as follows.
A dispersion relation for this model follows from an assumed solution of the formu,v ∼ exp(iωt − ikx)

in Eq. (7), giving
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By comparing the expression force
l = ω/k(ω) with Eq. (3), the following formula for the aggregated

parameterβ can be derived:

β =
3
4

α
λ +2µ

µ
≈

3
4

α
(

λ
µ

)

, (11)

assumingµ ≪ λ .
The aggregated parameterβ describes the relative effects of the elastic properties of the host material (λ

andµ) and the volume fraction of inclusions (α). This enables informative comments and consistent design
of new elastic materials that provide a desirable value for the aggregated parameterβ (perhaps derived from
an optimisation study).
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2.3 Models for resonant frequency ω0

For a number of paradigmatic shapes the resonance frequencyω0 can be calculated analytically and
employed in Eqs. (3). For instance, for a spherical inclusion of radiusr0 in a rubber-like material the lowest
resonance frequency can be estimated by employing analytical results for the response scattering from a
single inclusion [6,14]

ω0 = ξ1
cs

r0
= ξ1

(

4π
3v0

)1/3

cs, (12)

wherev0 = (4π/3)r3
0 is the volume of the cavity. Parameterξ1 is approximately 2 for a void inclusion [15].

For the case of a hard spherical inclusion one can use the formula [6,10,15]

ξ1 =
3

√

2(ρi/ρ)+1
, (13)

whereρi is the mass density of the inclusions andρ is the density of the matrix. For the most realistic
compositesρi/ρ is generally less than 10 and this leads to a reasonably narrow range for the parameterξ1
to capture a variety of the elastic properties of the materials that are of interest for practical applications.
Typically, 0.5≤ ξ1 ≤ 0.7.

To evaluate other inclusion shapes a phenomenological approach initially proposed in Refs. [4, 16] can
be used. According to this approach the resonance frequency of a spheroidal cavity can be estimated by
introducing a shape factorξ2:

ωe
0 = ξ2ω0, (14)

whereω0 is the resonance frequency of a spherical inclusion of the same volumev0 = (4π/3)r3
0 ≈ (4π/3)a2c,

and a and c are the main axes of the spheroidal inclusion. The correspondingeffective radius isr0 =
(ca2)1/3 = ae1/3, wheree = a/c is the eccentricity of the spheroid. The simplest formula for the ‘shape’
factor can be conjectured from some analytical arguments [16] and is

ξ2 =
κ

lnZ
, e ≥ 1, (15)

and
ξ2 = (1/κ)lnZ, e ≤ 1, (16)

whereZ = 2e+2/e andκ = ln(4). For a spherical inclusione = 1 andξ2 = 1. The limit e → 0 or e → ∞
corresponds to the extreme cases of an oblate or prolate spheroid,respectively.

A very slender inclusion can be modeled as a cylinder. At this limit the analytical results for the resonance
scattering in the cylindrical geometry [13] can be employed. For a cylindrical void of radiusr0 Eq. (12) can
still be used but with an additional factorξ2 = 1/ ln(cl/cs)≪ 1. For the case of a conventional polymer matrix
this implies that the shape parameterξ1 can take rather lower values (down toξ1 ≃ 0.3).

If the volume fraction of inclusions is not very low, then the effect of multiple scattering (or coherence
of sound waves scattered by different inclusions) may become important. In this case the scatterers can no
longer be considered independent and the proposed framework mustbe refined. Formally, the resonance
frequencyω0 then becomes a function of the volume fractionα. To describe this effect the analytical models
of Refs. [7,9] are employed, where the resonance frequency of a system of identical inclusions can be written
in the scaling form

ωe
0 = ξ3ω0, (17)

whereω0 is the resonance frequency of a single inclusion in an infinite medium (i.e., given by Eqs. (12), (14)),
and factorξ3 can be estimated from the explicit relationship:

ξ3 = QP, (18)

Q(α) =

√

1+(2/3)α5/3

1− (3/2)α1/3+(3/2)α5/3−α2
, (19)

P(α,ρi,ρ) =

√

2(ρi/ρ)+1
2(ρi/ρ)+ζ

, (20)

with ζ = (1+2α)/(1−α). One can see that for low concentrations of inclusions (α → 0),P → 1 andζ → 1,
andξ → 1, so this expression is consistent with Eq.(12) for sparse composites.
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To summarise, the main outcome of the proposed models is that the natural frequencies of an inclusion in a
rubber-like material can be approximated in the simple scaling form, ωe

0 = ξ (cs/r0), wherer0 is the effective
radius, andξ = ξ1ξ2ξ3, with factorsξ1,ξ2,ξ3 determined by the density, shape and relative proximity of
inclusions as defined above. This form provides a simple, yet rigorous, framework for prediction and control
of the resonance properties of composite materials with inclusions.

3. NUMERICAL RESULTS
Eqs. (3), (11), (12) and (14)–(20) completely characterise the elastic properties (effective elastic moduli)

of the composite material with resonant inclusions. At low concentration of inclusions the volume fraction
α does not enter the expression for the parameterω0, so the parametersα (or β ) and ω0 can be varied
independently. At higher concentrations the correction forω0 given by Eq. (17) needs to be applied.

As the first step, the scaling factorsξ1, ξ2 andξ3 in Eqs.(12), (14), and (17) are validated. The formula
(12) for a spherical void is well-known and is the material of textbooks [6,14]. The expression (12) has been
previously used in numerous studies [10]. The expression for the shape parameterξ2 (Eqs. (15) and (16) can
be validated by comparison with numerical calculations for spheroidal voids in rubber-like materials [4,16].
Fig. 2(a) compares the calculated resonance frequencies with the analytical approximation of Eqs. (15) and
(16)) as a function of eccentricitye. It can be seen that the simple analytical approximation provides a good
fit.

0 10 20 30
0

0.5

1

1.5

2

Eccentricity of void e

F
ac

to
r ξ

2

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

Volume fraction α

F
ac

to
r ξ

3

(a) (b)

Figure 2 – Factors for estimation of resonance frequency: (a) Shape factor, Eq.(14), for a spheroidal inclusion;
(b) Scaling factor, Eq.(18), for a material with spherical voids embedded in the host rubber-like matrix as a
function of the inclusion volume fraction ofα. In both figures, markers correspond to numerical results [4,16]
or experimental data [7,9]

.

Next, Eq. (18) for the concentration correction for the resonant scattering by a composite with inclusions
is validated. In Fig.2(b) measurements of the resonance frequencies of a composite material are compared
with the results of the equation, presented as a function of concentration. The markers show data for steel
inclusions embedded in a host rubber-like material withcl = 1500 m/s andcs = 200 m/s [7]. Although the
agreement for the scaling factor in the figure is not as good as for the shape factor, these results, and others [9],
clearly show the general trend of an increase in resonance frequencywith an increase in the volume fraction
of inclusions (for a given inclusion size). This trend is supported by the analytical model of Eq. (18) for a
broad range of parameters. For low volume concentration the asymptote of Eq. (18) is ξ2 ≈ 1+(3/4)α1/3.

As a demonstration of the proposed approach the following optimisation problem is considered. More
specifically, the optimal performance of a vibro-acoustic panel formed by a visco-elastic matrix with resonant
inclusions (voids) is determined. The performance of the panel can easily be defined in terms of parameters
of the proposed framework (such asβ andω0, or α andr0) that can be tuned.

An elastic planar panel of fixed thickness in water is considered and the reflection and transmission of
sound at normal incidence is computed using plane-wave reflection/transmission theory (see, for example [17–
19] and the physical properties shown in Table1. The theory is based on plane waves incident on finite
thickness layers of infinite lateral extent. The amplitude of reflected and transmitted plane waves is obtained
mathematically by using the equations of continuity of pressure, shear stress and particle velocity across
the boundaries of the layers at arbitrary angles of incidence. In the example here at normal incidence the
shear modulus of the voided panel does not affect the energy reflection or transmission coefficientsR andT
(although the shear modulus of the matrixdoes affect the compressional modulusλ +2µ through Eqs. (3)
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Table 1 – Material Properties for Figs.3 and4

.

Material Parameter Value Units

Water Density 1000 kg/m3

Sound speed 1500 m/s

Elastic Material Density 1300 kg/m3

Compressional modulusλ +2µ 5×109 Pa
Loss factorη 0.001 —

Shear modulusµ 3×106 Pa
Loss factorη 0.1 —

Voided panel Thicknessh 0.05 m
Fig. 3 void radiusr0 0.005 m
Fig. 3 void volume fractionα 0.01 —

and (11)). Furthermore, with only one layer in the panel and the same medium on either side of the panel the
equations can be written analytically. For example, for a panel of thicknessh [20],

T =
4

4cos2 kh+
(

ρwcw
ρece

l
+

ρece
l

ρwcw

)2
sin2 kh

, (21)

whereρw andcw and the density and sound speed in water, respectively, and the wavenumberk is as in Eq. (2).
With damping included, asµ∗ = µ(1+ iη), etc. (see Table1), bothk andce

l are complex.
Fig. 3 shows the results using the simplified effective elastic properties given by Eqs. (3), (11) and (12)

compared with results of the well established theories of Gaunaurd [21] and Chaban [15]. Fig. 3(a) shows
the energy reflectionR and transmissionT coefficients for the panel, and Fig.3(b) shows the fraction of
energy absorbed by the panel (1−R− T ) according to these three theories. The results of the simplified
model and [15] are almost indistinguishable, and good agreement is obtained for all models. The effect of
void shape and high volume concentration is not included in the comparison as models [21] and [15] do not
include this effect. The resonanceω0 around 3 kHz can be clearly seen.

The high frequency absorption tail of Gaunaurd’s theory in Fig.3 is due to the inclusion of the direct
scattering from the voids themselves, whereas the Chaban and simplified theories only include the loss from
the material resonance due to those voids. If the loss factors are set to zero in the modelling then the sound
absorption becomes zero for these two theories, unlike the Gaunaurd theory. The effect of the absorption tail
is not insignificant above the resonance frequency, as can be seen in the blue curve of Fig.3(a).
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Figure 3 – Comparison of the simplified model, Eqs. (3), (11) and (12) with established theories [21], labelled
‘Gau’, and [15], ‘Cha’: (a) sound reflectionR and transmissionT ; (b) sound absorption (1−R−T ).
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Figure 4 – Mean sound absorption over 1–10 kHz as a function of volume fractionα and radius of inclusion
r0: (a) simplified model, Eqs. (3), (11) and (12); (b) established theory [21].

Fig.4 shows a measure of the effect of varying void radius and volume fraction on the energy absorbed. In
this case the measure chosen is the mean energy absorption coefficient over the frequency range from 1–10
kHz. Fig. 4(a) uses the simplified model and Fig.4(b) uses the theory of Gaunard [21]. Calculations have
not been shown for the theory of Chaban [15] as it agrees closely with the simplified model. The advanced
models and the simplified model are in good quantitative agreement. A global maximum in sound absorption
of 0.36 is observed atα = 0.01–0.02, r0 = 1.5 mm for both models, although the peak is broad. Different
results would be obtained depending on the measure chosen for optimisation.

4. CONCLUDING REMARKS
The two-parameter model presented above can enable a significant simplification in modelling of compos-

ite materials with resonant inclusions. It formulates the effective elastic properties of the materials in terms
of only two aggregated parameters (volume fraction of inclusions and the resonance frequency of an indi-
vidual inclusion) that realistically describe the elastic properties of the composite if the base material sound
speed is known. The specific values of these parameters can be translated to the particular structure of the
material in many different ways, such as by changing volume fraction, size, shape and density of inclusions.
Importantly, the acoustic properties of the composite should besimilar as long as the value of two aggregated
parameters remain the same. Furthermore, the resonance frequency of the inclusions can be related to the
shear modulus of the base material if it is known. This approachmay help to establish a feasible strategy for
consistent assessment of candidate materials and insightfulevaluation studies, especially when the process of
sound–material interaction exhibits complex wave phenomenology (see Fig.3).

The proposed framework can easily be integrated in any 1D model for the sound wave propagation (see
Eq.(2)). This enables straightforward numerical calculations of the effective elastic moduli of elastic struc-
tures (laminates) consisting of a number of layers with resonantinclusions. These calculations may provide
revealing guidance at the design stage of vibro-elastic panelsand reduce the experimental burden associated
with exploring their optimal configurations.
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