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ABSTRACT
The phenomenon of irregular frequencies or spurious modes in boundary element techniques for acoustic
problems has been well investigated and a number of methods have been presented to overcome this problem.
The most popular methods seem to be the Combined Helmholtz Integral Equation Formulation (CHIEF) and
the Burton and Miller formulation. This contribution deals with the latter and its only parameter, i.e. the
so-called coupling parameter. It is known for more than four decades that this parameter must be complex
for radiation from rigid bodies with particle velocity prescribed. During the 1980ies, a number of authors
proposed the value of i/k. This value is proving to be an excellent choice for the high frequency limit. However,
it turned out that the optimal choice of the coupling parameter depends on a few more parameters including
the harmonic time dependence and the formulation of the integral equation itself. This paper discusses these
influences for a specific EAA benchmark case which has only recently been proposed, i.e. the radiatterer.
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1. INTRODUCTION
The Burton and Miller formulation [1] for exterior acoustic problems is well-known since it is free of

fictitious resonances, see also [2]. The only parameter of the Burton and Miller formulation is known as the
coupling parameter. When reading the literature applications of the method, it seems clear to choose this
parameter to be i/k [3–29] or at least positively proportional [30, 31] or asymptotically proportional [32, 33] to
this value. Some authors did not explicitely mention their choice of coupling parameter [34, 35]. Interestingly,
some authors apply this value i/k as a negative value [36, 37]. Terai [38] has even clarified that the positive
value is valid for a harmonic time dependence of e+iωt whereas in case of using e−iωt , the coupling parameter
should be negative. Especially Terai’s work is essential in this context but seems to have been ignored by
most authors who have used e−iωt . However, Kress [14] and Amini [3] were both using this kind of harmonic
time dependence and clearly found that i/k is a very good and even close to optimal choice to minimize the
condition number. Apparently, it is not completely clear, what the optimal coupling parameter for the Burton
and Miller formulation is. Furthermore, it will even be shown that many authors are using a coupling parameter
which is not optimal.

2. BEM FORMULATION OF THE BURTON AND MILLER METHOD
Derivation of the wave equation, discussion of boundary conditions, weak formulation and discretization

process are presented in a reduced way. A more detailed presentation is found in the concept chapter [39].

2.1 Helmholtz equation and Boundary Conditions
We consider linear acoustic problems defined in the domain Ω with the complement Ωc and Γ representing

the closed boundary of Ω and Ωc. The outward normal is pointing into the complementary domain Ωc. The
wave equation

∆ p̃(~x, t) =
1
c2

∂ 2 p̃(~x, t)
∂ t2 ~x ∈Ω⊂ R3 (1)

is valid for the sound pressure p̃. Alternatively, a velocity potential may be used. The space dimension d is three
in real applications, but can be two or one in certain cases. To complete a solution, the differential equation
requires boundary conditions and initial conditions, which will be specified when used. For time–harmonic
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problems, a time dependence is introduced. Herein, we use the time–dependence

p̃(~x, t) = p(~x)eα iωt (2)

with α =±1. Applying the time–harmonic dependence of p to Equation (1) leads to the Helmholtz–equation
for the sound pressure.

Helmholtz–equation: ∆p(~x)+ k2 p(~x) = 0 ~x ∈Ω. (3)

This result is independent of α . We assume Neumann boundary conditions for which the normal particle
velocities of the fluid v f equals the (prescribed) particle velocity of the underlying radiator vs as

Boundary condition:
∂ p(~x)
∂n(~x)

= skv f (~x) = skvs(~x) ~x ∈ Γ. (4)

The normal fluid particle velocity v f is related to the normal derivative of the sound pressure p by means of
the Euler equation in frequency domain. The wave–number k = ω/c is the quotient of the circular frequency
ω = 2π f ( f denoting frequency) and the speed of sound c; s is a constant given by s=−iαρ0c. In Equation (4),
i is the imaginary unit (i2 =−1) and ρ0 the average density of the fluid. The vector~n(~x) represents the outward
normal at the surface point~x and ∂/∂n(~x) is the normal derivative.

2.2 Weak Formulation
A weak formulation is based on introducing the weight function χ(~x) and “testing” it with the Helmholtz

operator such that ∫
Ω

χ(~x)
[
∆p(~x)+ k2 p(~x)

]
dΩ(~x) = 0 . (5)

Integrating by parts twice gives∫
Ω

χ(~x)
[
∆p(~x)+ k2 p(~x)

]
dΩ(~x) = sk

∫
Γ

χ(~x)v f (~x)dΓ(~x) +
(6)

−
∫

Γ

∂ χ(~x)
∂n(~x)

p(~x)dΓ(~x) +
∫

Ω

p(~x)
[
∆χ(~x)+ k2

χ(~x)
]

dΩ(~x) = 0 .

The second part of Equation (6) consists of one domain integral and two boundary integrals. This domain
integral can be transformed into an integral–free term by using fundamental solutions G(~x,~y) in the sense of
distributions. Function G represents the solution of the equation

∆G(~x,~y)+ k2G(~x,~y) = β δ (~x,~y) , (7)

where, similar to α in Equation (2), β = ±1. G is known as free–space Green’s function as well, whereas
δ (~x,~y) is the Dirac or delta function at the origin~y. In terms of physics, G(~x,~y) can be understood as the sound
pressure distribution according to a point source (monopole) in~y. Together with the harmonic time–dependence
of e−iωt , it represents an outgoing wave. We can write G as

G(~x,~y) =
1

4π

e−iαkr(~x,~y)

r(~x,~y)
~x,~y ∈ R3. (8)

with r as the Euclidean distance between field point~x and source point~y as r(~x,~y) = |~x−~y|. Note that the
fundamental solution depends on the choice of the harmonic time dependence.

Applying the property of the fundamental solution and the delta function, we find∫
Ω

p(~x)
[
∆G(~x,~y)+ k2G(~x,~y)

]
dΩ(~x) =

∫
Ω

p(~x)βδ (~x,~y)dΩ(~x) = βc(~y)p(~y). (9)

With this result and application of the boundary condition (4), Equation (6) is rewritten as

βc(~y)p(~y) +
∫

Γ

∂G(~x,~y)
∂n(~x)

p(~x)dΓ(~x) = sk
∫

Γ

G(~x,~y)vs(~x)dΓ(~x) . (10)

Equation (10) is known as representation formula. For~y∈Γ, it is known as the Kirchhoff–Helmholtz (boundary)
integral equation. Note that plus and minus signs of either the first term or the second and the third term may
be different if the direction of the normal vector is chosen in opposite direction.
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2.3 Approximation and Discretization by Collocation
Independent of the discretization method, we formulate approximations of our physical quantities. First of

all, we approximate the sound pressure p(~x) as

p(~x) =
N

∑
l=1

φl(~x) pl = φ
T (~x)p , (11)

where pl represents the discrete sound pressure at point~xl and φl is the l−th basis function for our approxima-
tion. Further, we assume that similar approximations are formulated for the particle velocity of the structure
vs

vs(~x) =
N̄

∑
j=1

φ̄ j(~x)vs j = φ̄
T
(~x)vs (12)

If vs is explicitly known, these approximations are not necessary for evaluation of the boundary integrals in
Equation (10). However, there are many practical cases where the structural particle velocity is the result of a
finite element simulation and available only as piecewise defined function.

The number of basis functions φl and φ̄ j is given by N and N̄, respectively. If the particle velocity of the
structure is a known function, N accounts for the degree of freedom. Herein, this coincides with the number
of nodes of the boundary element mesh. For BEM with discontinuous boundary elements, it is common that
N̄ = N.

The collocation method requires testing Equation (10) with the Dirac function δ (~y,~z). This integration is
known analytically, cf. Equation (9). It yields

βc(~z)p(~z)+
∫

Γ

∂G(~x,~z)
∂n(~x)

p(~x)dΓ(~x) = sk
∫

Γ

G(~x,~z)vs(~x)dΓ(~x) , (13)

which is basically the same expression as shown in Equation (10). The major difference between equations (10)
and (13) is that the former is actually a continuous integral equation whereas the latter is valid just for the
discrete point~z. This means that the integral equation is fulfilled at a number of discrete points, i.e. collocation
points~zl . It is common practice that the collocation points coincide with the nodes of the piecewise formulated
approximation of the sound pressure as shown in Equation (11). For further considerations we assume that
φl(~zk) = δlk where δlk is the Kronecker symbol with δlk = 0 for l 6= k and δlk = 1 for l = k. Then, applying
the approximation of equations (11) and (12) yields the matrix equation as

H p = Gvs (14)

Matrix G is the system matrix of the single layer potential as

gl j = sk
∫

Γ

G(~x,~zl) φ̄ j(~x)dΓ(~x) (15)

and matrix H contains the integral–free term and the contribution of the double layer potential as

hl j = βc(~zl)δl j +
∫

Γ

∂G(~x,~zl)

∂n(~x)
φ j(~x)dΓ(~x) . (16)

2.4 Normal Derivative Integral Equation
For further analysis, the normal derivative of equation (10) is required. This is given as

βc(~y)
d p(~y)
∂n(~y)

+
∫

Γ

∂ 2G(~x,~y)
∂n(~x)∂n(~y)

p(~x)dΓ(~x) = sk
∫

Γ

∂G(~x,~y)
∂n(~y)

vs(~x)dΓ(~x) . (17)

A similar discretization process as in the previous subsection yields the matrix equation as

E p = F vs (18)

with Matrix F as the system matrix of the integral free term and the adjoint double layer potential as

fl j = sk
[
−βc(~zl)+

∫
Γ

∂G(~x,~zl)

∂n(~zl)
φ̄ j(~x)dΓ(~x)

]
(19)

and matrix E with the contribution of the hypersingular operator as

el j =
∫

Γ

∂ 2G(~x,~zl)

∂n(~x)∂n(~zl)
φ j(~x)dΓ(~x) . (20)
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2.5 The Burton and Miller Method
The Burton and Miller method is based on a linear combination of equations (10) and (17) for which the

coupling parameter η is introduced. The coupled equation reads as follows

βc(~y)p(~y) +
∫

Γ

∂G(~x,~y)
∂n(~x)

p(~x)dΓ(~x) + η

∫
Γ

∂ 2G(~x,~y)
∂n(~x)∂n(~y)

p(~x)dΓ(~x) =

(21)

= sk
∫

Γ

G(~x,~y)vs(~x)dΓ(~x) + η

[
−β skc(~y)vs(~y) + sk

∫
Γ

∂G(~x,~y)
∂n(~y)

vs(~x)dΓ(~x)
]
.

The matrix form is easily derived from this equation and equations (14) and (18)

[H +ηE] p = [G+ηF ] vs (22)

which is - for the Neumann problem - solved for p.

3. TEST PROBLEMS
The formulation has been tested for different values of η in particular with respect to α and β . It turned out

that identical results independent of η are evaluated if α and β are either both +1 or −1, hence, if the product
of both is αβ = 1. Similarly, the results are identical for both combinations of αβ =−1, again independent
of the choice of η . Furthermore, it turned out that the results are identical for η = i/k in combination with
αβ = 1 and for η =−i/k in combination with αβ =−1. They are also identical for η = i/k in combination
with αβ =−1 and for η =−i/k in combination with αβ = 1.

The different choices for α , β and η are compared for the newly generated benchmark problem of the
European Acoustics Association, the Radiatterer [40]. This model of 2.5×2.0×1.7m3 (considered in air)
contains a number of resonators including a Helmholtz resonator. Linear discontinuous boundary elements are
used for this evaluation [41]. When applying a unit (purely real) particle velocity to the entire Radiatterer’s
surface, numerous resonance peaks can be observed. The first one, a Helmholtz resonator resonance is found
at approximately 20 Hz. Although very similar results are yielded for the cases of η = i/k in combination
with αβ = 1 and in combination with αβ =−1, the radiated sound power is completely different. Actually,
the radiated sound power becomes negative for αβ =−1 whereas it is positive for αβ = 1. This behavior is
not only observed for that particular resonance but also for other resonance peaks. It could be ruled out that
this effect is neither due to integration accuracy when setting up the BE matrices nor to the accuracy of the
solution of the linear system of equations. The reason for the negative sound power consists in the complex
sound pressure value at these resonances. The real part of the sound pressure inside the resonator is much
smaller than the imaginary part but only the real part is considered for the sound power. At the same time, the
resonator region dominates the radiation. Positive and negative coupling parameters result in different signs of
the (small) real part of the sound pressure inside the radiator.

The same effect is found when solving the system of equations iteratively by using a GMRes algorithm,
see [42] and references therein. An η = i/k in combination with αβ = 1 is almost optimal. Small adjustment
to improve convergence remain. The same holds for an η =−i/k in combination with αβ =−1.

Although not wrong but not optimal is it to choose η = i/k in combination with αβ =−1.
Scanning the literature showed that a better coupling parameter was chosen in [3–7, 9, 12–14, 17, 22, 30–33,

36, 38] while a coupling parameter which is far from optimal was chosen in [5, 10, 11, 15, 16, 18–21, 23–29].
For some papers, it was impossible to decide whether the authors chose the better solution or not [8,34,35,37].
In these cases, some information for the decision has been missing in the paper.

4. CONCLUSION
It has been interesting to see that the widely used coupling parameter of the Burton and Miller formulation

is often applied in a way which is not optimal and leads to unphysical results although the numerical accuracy
is still acceptable from a mathematical point of view. Interestingly, some authors (including the author of this
paper) appear with both solutions in literature.
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